欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

考虑复杂环境干扰的拦截弹攻击区在线生成方法

王晓芳*(), 赵杨燕   

  1. (北京理工大学 宇航学院, 北京 100081)
  • 收稿日期:2024-12-05 修回日期:2025-05-29
  • 通讯作者: *邮箱:wangxf@bit.edu.cn
  • 基金资助:
    国家自然科学基金项目(11502019)

Online Generation Method for Interceptor Missile Launch Envelope Considering Complex Environmental Disturbances

WANG Xiaofang*(), ZHAO Yangyan   

  1. (School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China)
  • Received:2024-12-05 Revised:2025-05-29

摘要: 针对复杂环境干扰下拦截弹拦截高超滑翔目标的攻击区在线求解问题,提出一种以径向基函数(Radial Basis Function, RBF)神经网络为基模型、通过自注意力(Self-Attention, SA)机制集成的RBF+SA攻击区网络模型。建立考虑风和大气密度扰动等环境干扰的拦截弹运动方程组,在给定目标运动、拦截弹机动能力和制导策略的基础上,定义了以拦截弹初始位置和初始速度方向表征的攻击区,并离线获得环境干扰下的攻击区样本数据。考虑不同方向风、大气密度等多项环境干扰对拦截弹攻击区影响的强非线性,基于RBF神经网络建立风、大气密度等单干扰下的攻击区网络基模型,再建立SA机制实现不同作战场景中对单干扰攻击区基模型的动态集成,形成具有较快训练速度和良好精度的多环境干扰下攻击区网络模型。仿真结果表明,攻击区RBF+SA模型能够以较高的精度表征复杂环境干扰下的攻击区,且能以较少的样本数据实现更高的攻击区预测精度。

关键词: 拦截弹, 攻击区, 环境干扰, 径向基神经网络, 自注意力机制

Abstract: An RBF+SA attack zone network model that uses radial basis function(RBF)neural network as the base model and integrated with self-attention(SA)mechanism, is proposed to address the online calculation problem of the launch envelope when the interceptor missile intercepting a hypersonic gliding target under complex environmental disturbances. Initially, motion equations for the interceptor missile considering environmental disturbances such as wind and atmospheric density perturbations are established, and a launch envelope based on the given target motion, interceptor missile maneuverability, and guidance strategy is defined, characterized by the initial positions of the interceptor missile and the initial velocity direction of the interceptor missile. Additionally, sample data for the attack zone are obtained offline. Then considering the strong nonlinearity of the impact of multiple environmental disturbances on the interceptor missile’s attack zone, base models for the attack zone under single disturbances (e.g., wind and atmospheric density) using RBF neural networks are established, and a dynamic integration model of SA mechanism network is developed to dynamically integrate single-disturbance attack zone base models across various combat scenarios to achieve fast training speed and high accuracy. The results demonstrate that the RBF+SA model accurately represents the attack zone under multiple complex environmental disturbances with high precision and achieves higher prediction accuracy using fewer samples.

Key words: interceptor missile, attack zone, environmental disturbances, radial basis function neural network, self-attention mechanism

中图分类号: