欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

电弧增材框体结构有限元仿真模拟与实验

李青松1, 王磊1* (),赵宁2, 张笑天1 ,张磊2,王克鸿1   

  1. (1. 南京理工大学 材料科学与工程学院,江苏 南京 210094; 2.特种车辆设计制造集成技术全国重点实验室,内蒙古 包头 014030)
  • 收稿日期:2024-07-25 修回日期:2024-10-31
  • 通讯作者: *邮箱:wang1913@njust.edu.cn
  • 基金资助:
    特种车辆设计制造集成技术全国重点实验室基金项目(GZ2023KF009)

Finite Element Simulation Analysis and Experimental Study of Arc Additive Frame Structure

LI Qingsong1, WANG Lei1*(), ZHAO Ning2, ZHANG Xiaotian1, ZHANG Lei2, WANG Kehong1   

  1. (1.School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China; 2.National Key Laboratory of Integrated Technology for Special Vehicle Design and Manufacturing, Baotou 014030, Inner Mongolia, China)
  • Received:2024-07-25 Revised:2024-10-31

摘要: 利用瞬态热源、热循环曲线、全热循环、固有应变4种算法,依次对电弧增材典型框体构件变形和应力进行模拟,分析不同算法下的预测精度与计算效率。研究结果表明:瞬态热源算法预测的最大变形位置为框体顶部4个边角处,应力主要集中分布在框体拐角及顶部区域,与实验结果吻合良好,特征点变形与应力的预测精度分别为96.59%与95.01%,计算时间为326h;热循环曲线算法的预测精度与瞬态热源算法相当,但计算时间缩短至117h,预测的变形云图及应力曲线与实验结果吻合较好;相较于前两种算法,全热循环和固有应变算法对特征点变形的预测精度较低,分别为85.68%和65.86%,预测的变形云图与实验结果存在较大差异,可信度较低,但计算时间分别缩短至4h和2h,效率显著提高。

关键词: 电弧增材, 数值模拟, 变形, 应力

Abstract: The deformation and stress of typical frame components of arc additive were simulated by using four algorithms: transient heat source, thermal cycle curve, full thermal cycle and intrinsic strain, and the prediction accuracy and calculation efficiency under different algorithms are analyzed. The results show that the maximum deformation position predicted by the transient heat source algorithm is the top four corners of the frame, and the stress is mainly distributed in the corners and top areas of the frame, which is in good agreement with the experimental results, and the prediction accuracy of feature point deformation and stress is 96.59% and 95.01%, respectively, and the calculation time is 326h;. The prediction accuracy of the thermal cycle curve algorithm is comparable to that of the transient heat source algorithm, but the calculation time is shortened to 117h, and the predicted deformation contour and stress curve are in good agreement with the experimental results. Compared with the first two algorithms, the prediction accuracy of the total thermal cycle and intrinsic strain algorithm for feature point deformation is low, which is 85.68% and 65.86%, respectively, and the predicted deformation contour is quite different from the experimental results, and the reliability is low, but the calculation time is shortened to 4 h and 2 h, respectively, and the efficiency is significantly improved.

Key words: arc additive, numerical simulation, deformation, stress

中图分类号: