兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 120-134.doi: 10.12382/bgxb.2024.0573
王烨茹1, 陈殿坤2, 秦飞巍2,*(), 徐华杰3, 刘述4, 赵龙4
收稿日期:
2024-07-11
上线日期:
2024-11-06
通讯作者:
基金资助:
WANG Yeru1, CHEN Diankun2, QIN Feiwei2,*(), XU Huajie3, LIU Shu4, ZHAO Long4
Received:
2024-07-11
Online:
2024-11-06
摘要:
针对目前在红外小目标分割领域数据集稀缺问题,提出根据红外小目标特点设计图像分割弱监督方法来解决该问题。所提方法利用红外小目标边界框掩码作为监督,结合框外损失、框内损失和基于双模型的指数滑动平均迭代算法,为红外小目标分割提供一种更为经济高效的训练方式,在不需要大规模标注的情况下,让模型从有限的弱标签中获取知识,从而在红外小目标分割任务中表现出色。实验结果表明:所提方法成功克服了人工标注方式的繁琐和成本高的问题,为红外小目标分割任务提供了更高效和可持续的训练方式。
中图分类号:
王烨茹, 陈殿坤, 秦飞巍, 徐华杰, 刘述, 赵龙. 基于弱监督的红外小目标分割方法[J]. 兵工学报, 2024, 45(S1): 120-134.
WANG Yeru, CHEN Diankun, QIN Feiwei, XU Huajie, LIU Shu, ZHAO Long. Weak Supervision-based Infrared Small Target Segmentation Method[J]. Acta Armamentarii, 2024, 45(S1): 120-134.
图2 红外小目标弱监督算法BoxInf总体框架 注:图中PS-Loss表示红外小目标弱监督损失函数;SoftIoU-Loss表示伪掩码使用的一般图像分割损失函数
Fig.2 Overall framework of the infrared small target weak supervision algorithm BoxInf
数据集 | 方法 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
全监督 | 0.8836 | 0.8931 | 0.9453 | 0.9313 | 0.9382 | |
边界框掩码 | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 | |
GrabCut | 0.6547 | 0.6781 | 0.6871 | 0.9329 | 0.7913 | |
NUDT-SIRST | BoxSup | 0.6676 | 0.6848 | 0.7007 | 0.934 | 0.8007 |
BoxInst | 0.7762 | 0.7902 | 0.8345 | 0.9175 | 0.8740 | |
BoxTeacher | 0.7775 | 0.7821 | 0.8701 | 0.8796 | 0.8749 | |
BoxInf(本文) | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 | |
全监督 | 0.7733 | 0.7528 | 0.8512 | 0.8941 | 0.8721 | |
边界框掩码 | 0.6873 | 0.6967 | 0.7483 | 0.8940 | 0.8147 | |
GrabCut | 0.6928 | 0.6917 | 0.7565 | 0.8916 | 0.8185 | |
NUAA-SIRST | BoxSup | 0.7003 | 0.6965 | 0.8398 | 0.7901 | 0.8141 |
BoxInst | 0.7311 | 0.7312 | 0.8663 | 0.8240 | 0.8446 | |
BoxTeacher | 0.7361 | 0.7287 | 0.8566 | 0.8396 | 0.8480 | |
BoxInf(本文) | 0.7460 | 0.7349 | 0.8671 | 0.8423 | 0.8545 | |
全监督 | 0.7279 | 0.6856 | 0.8355 | 0.8488 | 0.8421 | |
边界框掩码 | 0.5734 | 0.5306 | 0.6117 | 0.9008 | 0.7286 | |
GrabCut | 0.5916 | 0.5731 | 0.6428 | 0.8805 | 0.7431 | |
IRSTD-1k | BoxSup | 0.6053 | 0.6370 | 0.7644 | 0.7237 | 0.7435 |
BoxInst | 0.6515 | 0.6552 | 0.7655 | 0.8134 | 0.7655 | |
BoxTeacher | 0.6553 | 0.6748 | 0.7947 | 0.7882 | 0.7914 | |
BoxInf(本文) | 0.6796 | 0.6716 | 0.8013 | 0.8166 | 0.8089 |
表1 与其他图像分割弱监督方法的实验对比结果
Table 1 Comparison of experimental results of the proposed method and other weakly supervised image segmentation methods
数据集 | 方法 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
全监督 | 0.8836 | 0.8931 | 0.9453 | 0.9313 | 0.9382 | |
边界框掩码 | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 | |
GrabCut | 0.6547 | 0.6781 | 0.6871 | 0.9329 | 0.7913 | |
NUDT-SIRST | BoxSup | 0.6676 | 0.6848 | 0.7007 | 0.934 | 0.8007 |
BoxInst | 0.7762 | 0.7902 | 0.8345 | 0.9175 | 0.8740 | |
BoxTeacher | 0.7775 | 0.7821 | 0.8701 | 0.8796 | 0.8749 | |
BoxInf(本文) | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 | |
全监督 | 0.7733 | 0.7528 | 0.8512 | 0.8941 | 0.8721 | |
边界框掩码 | 0.6873 | 0.6967 | 0.7483 | 0.8940 | 0.8147 | |
GrabCut | 0.6928 | 0.6917 | 0.7565 | 0.8916 | 0.8185 | |
NUAA-SIRST | BoxSup | 0.7003 | 0.6965 | 0.8398 | 0.7901 | 0.8141 |
BoxInst | 0.7311 | 0.7312 | 0.8663 | 0.8240 | 0.8446 | |
BoxTeacher | 0.7361 | 0.7287 | 0.8566 | 0.8396 | 0.8480 | |
BoxInf(本文) | 0.7460 | 0.7349 | 0.8671 | 0.8423 | 0.8545 | |
全监督 | 0.7279 | 0.6856 | 0.8355 | 0.8488 | 0.8421 | |
边界框掩码 | 0.5734 | 0.5306 | 0.6117 | 0.9008 | 0.7286 | |
GrabCut | 0.5916 | 0.5731 | 0.6428 | 0.8805 | 0.7431 | |
IRSTD-1k | BoxSup | 0.6053 | 0.6370 | 0.7644 | 0.7237 | 0.7435 |
BoxInst | 0.6515 | 0.6552 | 0.7655 | 0.8134 | 0.7655 | |
BoxTeacher | 0.6553 | 0.6748 | 0.7947 | 0.7882 | 0.7914 | |
BoxInf(本文) | 0.6796 | 0.6716 | 0.8013 | 0.8166 | 0.8089 |
方法 | 损失函数 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
边界框掩码 | DiceIoU-Loss | 0.5580 | 0.6585 | 0.5810 | 0.9337 | 0.7163 |
边界框掩码 | SoftIoU-Loss | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 |
BoxInf | DiceIoU-Loss | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
BoxInf | SoftIoU-Loss | 0.7585 | 0.7728 | 0.8854 | 0.8410 | 0.8626 |
表2 数据集NUDT-SIRST上不同损失函数组合的消融实验
Table 2 Ablation experiments with different loss function combinations
方法 | 损失函数 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
边界框掩码 | DiceIoU-Loss | 0.5580 | 0.6585 | 0.5810 | 0.9337 | 0.7163 |
边界框掩码 | SoftIoU-Loss | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 |
BoxInf | DiceIoU-Loss | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
BoxInf | SoftIoU-Loss | 0.7585 | 0.7728 | 0.8854 | 0.8410 | 0.8626 |
Project-Loss | Shape-Loss | EMA | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|---|
边界框掩码 | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 | ||
√ | 0.7702 | 0.7886 | 0.8620 | 0.8786 | 0.8702 | ||
√ | √ | 0.7919 | 0.8142 | 0.8957 | 0.8723 | 0.8838 | |
√ | √ | √ | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
表3 数据集NUDT-SIRST上BoxInf模型模块组成的消融实验
Table 3 Ablation experiment of BoxInf model modules
Project-Loss | Shape-Loss | EMA | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|---|
边界框掩码 | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.8242 | ||
√ | 0.7702 | 0.7886 | 0.8620 | 0.8786 | 0.8702 | ||
√ | √ | 0.7919 | 0.8142 | 0.8957 | 0.8723 | 0.8838 | |
√ | √ | √ | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
数据集 | 方法 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
NUDT-SIRST | Box | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.7242 |
BoxGrabCut | 0.6547 | 0.6781 | 0.6871 | 0.9329 | 0.7913 | |
NUAA-SIRST | Box | 0.6873 | 0.6967 | 0.7483 | 0.8940 | 0.8147 |
BoxGrabCut | 0.6928 | 0.6917 | 0.7565 | 0.8916 | 0.8185 | |
NUAA-SIRST | Box | 0.5734 | 0.5306 | 0.6117 | 0.9008 | 0.7286 |
BoxGrabCut | 0.5916 | 0.5731 | 0.6428 | 0.8805 | 0.7431 |
表4 不同预处理方式的最终训练效果
Table 4 Training results of different preprocessing methods
数据集 | 方法 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|---|
NUDT-SIRST | Box | 0.5677 | 0.6419 | 0.6223 | 0.8661 | 0.7242 |
BoxGrabCut | 0.6547 | 0.6781 | 0.6871 | 0.9329 | 0.7913 | |
NUAA-SIRST | Box | 0.6873 | 0.6967 | 0.7483 | 0.8940 | 0.8147 |
BoxGrabCut | 0.6928 | 0.6917 | 0.7565 | 0.8916 | 0.8185 | |
NUAA-SIRST | Box | 0.5734 | 0.5306 | 0.6117 | 0.9008 | 0.7286 |
BoxGrabCut | 0.5916 | 0.5731 | 0.6428 | 0.8805 | 0.7431 |
λ | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
1/N | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
2/N | 0.8024 | 0.8262 | 0.8840 | 0.9048 | 0.8943 |
3/N | 0.8009 | 0.8206 | 0.8766 | 0.8990 | 0.8876 |
表5 数据集NUDT-SIRST上EMA迭代算法中不同λ对方法的最终效果
Table 5 The effect of different EMA iteration algorithms on the poroposed method
λ | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
1/N | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
2/N | 0.8024 | 0.8262 | 0.8840 | 0.9048 | 0.8943 |
3/N | 0.8009 | 0.8206 | 0.8766 | 0.8990 | 0.8876 |
偏移量 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
0 | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
+1 | 0.3830 | 0.3845 | 0.3900 | 0.9554 | 0.5539 |
+2 | 0.2563 | 0.2382 | 0.2586 | 0.9666 | 0.4080 |
+3 | 0.1893 | 0.1765 | 0.1916 | 0.9403 | 0.3183 |
表6 数据集NUDT-SIRST上损失函数组合的消融实验
Table 6 Ablation experiments on loss function combinations
偏移量 | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
0 | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
+1 | 0.3830 | 0.3845 | 0.3900 | 0.9554 | 0.5539 |
+2 | 0.2563 | 0.2382 | 0.2586 | 0.9666 | 0.4080 |
+3 | 0.1893 | 0.1765 | 0.1916 | 0.9403 | 0.3183 |
β | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
0.1 | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
0.2 | 0.8033 | 0.8245 | 0.8767 | 0.8954 | 0.8859 |
0.3 | 0.7968 | 0.8182 | 0.8586 | 0.8866 | 0.8723 |
表7 数据集NUDT-SIRST上PS-Loss损失函数加权值的消融实验
Table 7 Ablation experiment of weighted value of PS-Loss
β | IoU | nIoU | 准确率 | 召回率 | F1 |
---|---|---|---|---|---|
0.1 | 0.8044 | 0.8264 | 0.8867 | 0.8965 | 0.8916 |
0.2 | 0.8033 | 0.8245 | 0.8767 | 0.8954 | 0.8859 |
0.3 | 0.7968 | 0.8182 | 0.8586 | 0.8866 | 0.8723 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
pmid: 24043387 |
[8] |
|
[9] |
|
[10] |
王宇翔, 韩振铎, 王宏敏. 基于多向差异度的红外弱小目标检测算法[J]. 红外技术, 2012, 34(6):351-355.
|
|
|
[11] |
周姣, 辛云宏. 基于显著性与尺度空间的红外弱小目标检测[J]. 激光与红外, 2015, 45(4):452-456.
|
|
|
[12] |
|
[13] |
张天成. 复杂场景下的红外图像小目标检测方法研究[D]. 南京: 南京航空航天大学, 2023.
|
|
|
[14] |
夏超群. 基于局部和全局特征表示的红外小目标检测算法研究[D]. 杭州: 浙江大学, 2021.
|
|
|
[15] |
谢江荣. 基于深度学习的空中红外目标检测关键技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2020.
|
|
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
仉新, 张旭阳, 毛宇新, 等. 基于弱监督学习的图像语义分割算法综述[J]. 长江信息通信, 2023, 36(5):105-108.
|
|
|
[24] |
程舸帆, 何良华. 基于弱监督学习的医学图像分割方法研究[J]. 电脑知识与技术, 2022, 18(3):7-9.
|
|
|
[25] |
丁一鹏, 赵璐. 遥感图像语义分割中的弱监督域自适应算法[J]. 计算机工程与应用, 2022, 58(22):195-202.
doi: 10.3778/j.issn.1002-8331.2104-0259 |
doi: 10.3778/j.issn.1002-8331.2104-0259 |
|
[26] |
王强, 黄小明, 佟强, 等. 基于边界框标注的弱监督显著性目标检测算法[J]. 计算机应用, 2023, 43(6):1910-1918.
doi: 10.11772/j.issn.1001-9081.2022050706 |
doi: 10.11772/j.issn.1001-9081.2022050706 |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
龙建武, 刘东, 宋鑫磊. 前背景信息一致的边界框弱监督息肉分割网络[J]. 重庆理工大学学报(自然科学), 2023, 37(12):210-221.
|
|
|
[31] |
|
[32] |
|
[33] |
穆柯舟. 基于弱监督学习的显著性物体检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
|
|
[34] |
|
[35] |
刘昕竺. 基于弱监督学习的人体解析算法研究[D]. 北京: 北京交通大学, 2023.
|
[36] |
|
[37] |
胡孔涛. 基于弱监督学习的癌症病理图像分割[D]. 南京: 东南大学, 2020.
|
|
|
[38] |
刘永胜. 基于深度神经网络的弱监督学习方法在图像领域的研究[D]. 成都: 电子科技大学, 2020.
|
|
|
[39] |
|
[40] |
|
[41] |
姜昕. 基于图像级标注的弱监督海雾检测研究[D]. 北京: 北京邮电大学, 2024.
|
|
[1] | 宋晓茹, 刘康, 高嵩, 陈超波, 阎坤. 复杂战场环境下改进YOLOv5军事目标识别算法研究[J]. 兵工学报, 2024, 45(3): 934-947. |
[2] | 蒋昕昊, 蔡伟, 张志利, 姜波, 杨志勇, 王鑫. 基于COSNet的伪装目标分割[J]. 兵工学报, 2023, 44(5): 1456-1468. |
[3] | 马鹏阁, 魏宏光, 孙俊灵, 陶然, 庞栋栋, 单涛, 蔡志勇, 刘兆瑜. 基于高斯-拉普拉斯滤波的增强局部对比度红外小目标检测算法[J]. 兵工学报, 2023, 44(4): 1041-1049. |
[4] | 才华, 孙俊, 朱瑞昆, 朱新丽, 赵义武. 基于自适应圆边际的深度人脸识别算法[J]. 兵工学报, 2021, 42(11): 2424-2432. |
[5] | 刘昊, 谢鹏, 李玥. 联合火力打击中的多目标组合排序算法[J]. 兵工学报, 2020, 41(12): 2570-2578. |
[6] | 吴成茂, 孙佳美. 基于全散度的自适应鲁棒图形模糊聚类算法[J]. 兵工学报, 2019, 40(9): 1890-1901. |
[7] | 曾溢良, 蓝金辉, 邹金霖. 滑动置信度约束的红外弱小目标跟踪算法研究[J]. 兵工学报, 2017, 38(9): 1771-1778. |
[8] | 夏平, 任强, 吴涛, 雷帮军. 融合多尺度统计信息模糊C均值聚类与Markov随机场的小波域声纳图像分割[J]. 兵工学报, 2017, 38(5): 940-948. |
[9] | 温银堂, 王洪瑞, 张玉燕, 王振春, 战再吉, 梁波. 电磁轨道炮轨道口变形测量方法研究[J]. 兵工学报, 2013, 34(10): 1227-1230. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||