欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (S1): 120-134.doi: 10.12382/bgxb.2024.0573

• • 上一篇    下一篇

基于弱监督的红外小目标分割方法

王烨茹1, 陈殿坤2, 秦飞巍2,*(), 徐华杰3, 刘述4, 赵龙4   

  1. 1 杭州电子科技大学 网络空间安全学院, 浙江 杭州 310018
    2 杭州电子科技大学 计算机学院, 浙江 杭州 310018
    3 浙江科技大学 信息与电子工程学院, 浙江 杭州 310063
    4 杭州智元研究院有限公司, 浙江 杭州 310000
  • 收稿日期:2024-07-11 上线日期:2024-11-06
  • 通讯作者:
  • 基金资助:
    浙江省尖兵领雁项目(2023C03195); 计算机辅助设计与图形学(CAD&CG); 计算机辅助设计与图形学(A2304); 智元国家重点实验室开放课题(ZYL2024018a); 航空科学基金项目(2022Z0710T5001)

Weak Supervision-based Infrared Small Target Segmentation Method

WANG Yeru1, CHEN Diankun2, QIN Feiwei2,*(), XU Huajie3, LIU Shu4, ZHAO Long4   

  1. 1 School of Cyberspace Security, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    2 School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, Zhejiang, China
    3 School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310063, Zhejiang, China
    4 Hangzhou Zhiyuan Research Institute Co., Ltd., Hangzhou, 310000, Zhejiang, China
  • Received:2024-07-11 Online:2024-11-06

摘要:

针对目前在红外小目标分割领域数据集稀缺问题,提出根据红外小目标特点设计图像分割弱监督方法来解决该问题。所提方法利用红外小目标边界框掩码作为监督,结合框外损失、框内损失和基于双模型的指数滑动平均迭代算法,为红外小目标分割提供一种更为经济高效的训练方式,在不需要大规模标注的情况下,让模型从有限的弱标签中获取知识,从而在红外小目标分割任务中表现出色。实验结果表明:所提方法成功克服了人工标注方式的繁琐和成本高的问题,为红外小目标分割任务提供了更高效和可持续的训练方式。

关键词: 图像分割, 红外小目标, 密集连接, 弱监督, 损失函数

Abstract:

To address the challenge of limited training data in infrared small target segmentation, an image segmentation weak supervision method (BoxInf) is proposed. The method leverages bounding box annotations, a readily available weak supervision source, and incorporates out-of-box loss, in-box loss, and an exponential moving average (EMA) iterative algorithm within a dual-model framework. By effectively utilizing these elements, BoxInf offers a cost-effective training paradigm. The model learns from limited weak labels, circumventing the need for extensive and expensive pixel-wise annotations. Consequently, BoxInf demonstrates robustness in infrared small target segmentation tasks. The experimental validation confirms the effectiveness of the proposed method in mitigating the laborious and costly burden of manual annotation, paving the way for a more efficient and sustainable training strategy in this domain.

Key words: image segmentation, infrared small target, dense connections, weak supervision, loss function

中图分类号: