欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240489-.doi: 10.12382/bgxb.2024.0489

• • 上一篇    

基于LSTM-GBSVDD模型的飞行轨迹异常检测方法

李琳, 曾雅琴*(), 朱惠民**(), 孙世岩, 梁伟阁   

  1. 海军工程大学, 湖北 武汉 430033
  • 收稿日期:2024-06-20 上线日期:2025-05-07
  • 通讯作者:
    * 邮箱:
    ** 邮箱:
  • 基金资助:
    湖北省自然科学基金项目(2023AFB900); 国防科技战略先导计划资助项目(22-ZLXD-02-02-04-002-01)

Flight Trajectory Anomaly Detection Method Based on LSTM-GBSVDD Model

LI Lin, ZENG Yaqin*(), ZHU Huimin**(), SUN Shiyan, LIANG Weige   

  1. Naval University of Engineering, Wuhan 430033, Hubei, China
  • Received:2024-06-20 Online:2025-05-07

摘要:

为解决传统检测方法在处理复杂、动态以及数据长度实时变化的飞行轨迹数据时特征提取不准确、检测效率较低的问题,提出一种结合长短时记忆(Long Short-Term Memory,LSTM)网络和支持向量数据描述(Support Vector Data Description,SVDD)的无监督异常检测方法。利用LSTM网络提取可变长度飞行轨迹的关键特征,并将其转化为固定长度的序列表示;通过SVDD算法构建多维超球分类器,对正常飞行轨迹进行建模,从而识别潜在异常轨迹。为进一步提升模型性能,引入基于梯度的优化算法(Gradient-Based training algorithm,GB),实现LSTM与SVDD参数的联合训练,大幅度提高检测精度和计算效率。仿真实验结果表明,新提出的基于梯度优化的长短时记忆网络和支持向量数据描述模型(Long Short-Term Memory network and Support Vector Data Description model based on Gradient-Based training algorithm optimization, LSTM-GBSVDD)的飞行轨迹异常检测方法在处理复杂、多变的飞行轨迹异常检测任务中表现出较好的有效性和优越性,有较强的应用前景。

关键词: 飞行轨迹, 长短时记忆, 支持向量数据描述, 异常检测

Abstract:

The traditional detection methods have the disadvantages of inaccurate feature extraction and low detection efficiency when processing the complex and dynamic flight trajectory data with real-time change in data length. An proposed flight trajectory anomaly detection method using the gradient-based optimization of long short-term memory network and support vector data description model based on gradient training algorithm optimization (LSTM-GBSVDD)is proposed. The LSTM network is used to extract the key features of variable-length flight trajectories and convert them into a fixed-length sequence representation. A multidimensional hypersphere classifier is constructed using the SVDD algorithm, which is used to model the normal flight trajectories and identify the potentially abnormal flight trajectories. To further improve model performance, a gradient-based training algorithm (GB) is introduced to jointly train the parameters of LSTM and SVDD, which greatly improves the detection accuracy and computational efficiency. The simulated results show that the proposed flight trajectory anomaly detection method using the gradient-based optimization of long short-term memory network and support vector data description model based on gradient training algorithm optimization (LSTM-GBSVDD) has good effectiveness and superiority in dealing with complex and changeable flight trajectory anomaly detection tasks, and has good application prospects.

Key words: flight trajectory, long short-term memory, support vector data description, anomaly detection

中图分类号: