欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (4): 240393-.doi: 10.12382/bgxb.2024.0393

• • 上一篇    下一篇

基于改进YOLOv7-tiny的车辆目标检测算法

赵海丽*(), 许修常, 潘宇航   

  1. 长春理工大学 电子信息工程学院,吉林 长春 130022
  • 收稿日期:2024-05-21 上线日期:2025-04-30
  • 通讯作者:
    * 邮箱:
  • 基金资助:
    吉林省科技厅科技攻关项目(20210201092GX)

Vehicle Target Detection Algorithm Based on Improved YOLOv7-tiny

ZHAO Haili*(), XU Xiuchang, PAN Yuhang   

  1. School of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, Jilin, China
  • Received:2024-05-21 Online:2025-04-30

摘要:

为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。

关键词: 车辆检测, YOLOv7-tiny算法, 深度强力残差卷积块, 轻量级高效层聚合网络模块

Abstract:

At present,the traffic management relying on manpower is characterized by inaccurate statistics and delayed feedback.A vehicle detection algorithm based on the improved YOLOv7-tiny algorithm suitable for deploying on edge terminal devices is proposed to better protect people’s lives and property.A deep powerful residual (DP_Res)convolutional block isconstructed to perform the lightweight improvements on the efficient layer aggregation network-tiny (ELAN-T) module of backbone network.By reducing branches,the lightweight improvement on the ELAN-T module of the feature fusion network is made to reduce the number of parameters and computational load of the network,and the structure of the feature fusion network is reconstructed;The efficient channel attention mechanism and the EIOU bounding box loss function are introduced to improve the accuracy of the algorithm.The experiment is conducted on the preprocessed UA-DETRAC dataset,and the parameters of the improved algorithm are reduced by 15.1% compared to those of the original YOLOv7-tiny,with a reduction in computation of 5.3% and an increase in mAP@0.5 of 5.3 percentage points.The experimental results show that the improved algorithm not only achieves lightweight,but also improves the detection accuracy,making it suitable for deployment on edge terminal devices to complete the task of detecting vehicles on the road.

Key words: vehicle detection, YOLOv7-tiny algorithm, deep powerful residual convolutional block, efficient layer aggregation network-tiny module

中图分类号: