[1] |
SUN J K, SUN Z Z, LI J F, et al. TeCVP: a time-efficient control method for a hexapod wheel-legged robot based on velocity planning[J]. Sensors, 2023, 23(8): 4051.
|
[2] |
姜祎, 王挺, 邵沛瑶, 等. 一种轮腿复合型机器人的步态研究与越障性能分析[J]. 兵工学报, 2023, 44(1):247-259.
doi: 10.12382/bgxb.2022.0823
|
|
JIANG Y, WANG T, SHAO P Y, et al. Gait research and obstacle-surmounting performance analysis of a wheel-legged compound robot[J]. Acta Armamentarii, 2023, 44(1): 247-259. (in Chinese)
doi: 10.12382/bgxb.2022.0823
|
[3] |
曲梦可, 王洪波, 荣誉. 军用轮、 腿混合四足机器人设计[J]. 兵工学报, 2018, 39(4): 787-797.
doi: 10.3969/j.issn.1000-1093.2018.04.019
|
|
QU M K, WANG H B, RONG Y. Design of military wheel-leg hybrid quadruped robot[J]. Acta Armamentarii, 2018, 39(4): 787-797. (in Chinese)
|
[4] |
李姗姗, 王洪波, 陈建宇, 等. 新型四足并联军用机器人步态控制算法及仿真[J]. 兵工学报, 2023, 44(3): 895-909.
doi: 10.12382/bgxb.2021.0796
|
|
LI S S, WANG H B, CHEN J Y, et al. Gait control algorithm and simulation of new parallel quadruped military robot[J]. Acta Armamentarii, 2023, 44(3): 895-909. (in Chinese)
doi: 10.12382/bgxb.2021.0796
|
[5] |
GRAND C, BENAMAR F, PLUMET F. Motion kinematics analysis of wheeled-legged rover over 3D surface with posture adaptation[J]. Mechanism and Machine Theory, 2010, 45(3): 477-495.
|
[6] |
OROZCO-MAGDALENO E C, CAFOLLA D, CASTILLO-CASTANEDA E, et al. Static balancing of wheeled-legged hexapod robots[J]. Robotics, 2020, 9(2):23.
|
[7] |
BUCHANAN R, WELLHAUSEN L, BJELONIC M, et al. Perceptive whole-body planning for multilegged robots in confined spaces[J]. Journal of Field Robotics, 2021, 38(1): 68-84.
|
[8] |
REID W, PÉREZ-GRAU F J, GÖKTOĞAN A H, et al. Actively articulated suspension for a wheel-on-leg rover operating on a martian analog surface[C]//Proceedings of 2016 IEEE International Conference on Robotics and Automation. Stockholm, Sweden: IEEE, 2016: 5596-5602.
|
[9] |
SUZUMURA A, FUJIMOTO Y. Real-time motion generation and control systems for high wheel-legged robot mobility[J]. IEEE Transactions on Industrial Electronics, 2013, 61(7): 3648-3659.
|
[10] |
CORDES F, OEKERMANN C, BABU A, et al. An active suspension system for a planetary rover[C]//Proceedings of the International Symposium on A.pngicial Intelligence, Robotics and Automation in Space (i-SAIRAS). Montreal, Canada: Canadian Space Agency (CSA-ASC), 2014: 17-19.
|
[11] |
ACKERMAN E. A robot for the worst job in the warehouse: Boston Dynamics’ stretch can move 800 heavy boxes per hour[J]. IEEE Spectrum, 2022, 59(1): 50-51.
|
[12] |
LEE J, HWANGBO J, WELLHAUSEN L, et al. Learning quadrupedal locomotion over challenging terrain[J]. Science Robotics, 2020, 5(47): eabc5986.
|
[13] |
BELLICOSO C D, KRÄMER K, STÄUBLE M, et al. Alma-articulated locomotion and manipulation for a torque-controllable robot[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 8477-8483.
|
[14] |
辛亚先, 李贻斌, 柴汇, 等. 基于全身力矩控制的双腿轮机器人跳跃方法研究[J]. 自动化学报, 2020, 49(8): 1-10.
|
|
XIN Y X, LI Y B, CHAI H, et al. Research on jumping method of two-legged wheel robot based on whole body torque control[J]. Acta Automatica Sinica, 2020, 49(8): 1-10. (in Chinese)
|
[15] |
BJELONIC M, GRANDIA R, HARLEY O, et al. Whole-body mpc and online gait sequence generation for wheeled-legged robots[C]//Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague, Czech Republic: IEEE, 2021: 8388-8395.
|
[16] |
BJELONIC M, SANKAR P K, BELLICOSO C D, et al. Rolling in the deep-hybrid locomotion for wheeled-legged robots using online trajectory optimization[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3626-3633.
|
[17] |
KLEMM V, MORRA A, SALZMANN C, et al. Ascento:a two-wheeled jumping robot[C]//Proceedings of 2019 International Conference on Robotics and Automation. Montreal, Canada: IEEE, 2019: 7515-7521.
|
[18] |
KLEMM V, MORRA A, GULICH L, et al. LQR-assisted whole-body control of a wheeled bipedal robot with kinematic loops[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3745-3752.
|
[19] |
WANG S, CUI L, ZHANG J, et al. Balance control of a novel wheel-legged robot:design and experiments[C]//Proceedings of 2021 IEEE International Conference on Robotics and Automation. Xi’an, China: IEEE, 2021: 6782-6788.
|
[20] |
丁良宏. BigDog四足机器人关键技术分析[J]. 机械工程学报, 2015, 51(7):1-23.
doi: 10.3901/JME.2015.07.001
|
|
DING L H. Key technology analysis of BigDog quadruped robot[J]. Journal of Mechanical Engineering, 2015, 51(7):1-23. (in Chinese)
doi: 10.3901/JME.2015.07.001
|
[21] |
NGUYEN C, NGUYEN Q. Contact-timing and trajectory optimization for 3d jumping on quadruped robots[C] //Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C., US:IEEE, 2022: 11994-11999.
|
[22] |
GRAND C, BENAMAR F, PLUMET F, et al. Decoupled control of posture and trajectory of the hybrid wheel-legged robot Hylos[C]//Proceedings of IEEE International Conference on Robotics and Automation. New Orleans, LA, US:IEEE, 2004, 5:5111-5116.
|
[23] |
关龙新, 顾祖飞, 张超, 等. 考虑系统复杂扰动的智能车模型预测路径跟踪控制[J]. 汽车工程, 2022, 44(12):1844-1855,1876.
|
|
GUAN L X, GU Z F, ZHANG C, et al. Model predictive path following control of intelligent vehicles considering system complex disturbances[J]. Automotive Engineering, 2022, 44(12):1844-1855,1876. (in Chinese)
|
[24] |
MEDEIROS V S, JELAVIC E, BJELONIC M, et al. Trajectory optimization for wheeled-legged quadrupedal robots driving in challenging terrain[J]. IEEE Robotics and Automation Letters, 2020, 5(3): 4172-4179.
|
[25] |
BJELONIC M. Planning and control for hybrid locomotion of wheeled-legged robots[D]. Zurich, Switzerland: Eidgenössische Technische Hochschule Zürich, 2021.
|
[26] |
LI J H, MA J C, NGUYEN Q. Balancing control and pose optimization for wheel-legged robots navigating high obstacles[C]//Proceedings of 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems. Kyoto, Japan: IEEE, 2022: 8835-8841.
|
[27] |
贺伊琳, 马建, 杨舒凯, 等. 融合预瞄特性的智能电动汽车稳定性模型预测控制研究[J]. 汽车工程, 2023, 45(5):719-734.
|
|
HE Y L, MA J, YANG S K, et al. Research on stabilitymodel predictive control of intelligent electric vehicle with preview characteristics[J]. Automotive Engineering, 2023, 45(5):719-734. (in Chinese)
|
[28] |
BLEDT G, WENSING P M, INGERSOLL S, et al. Contactmodel fusion for event-based locomotion in unstructured terrains[C]//Proceedings of 2018 IEEE International Conference on Robotics and Automation. Brisbane, Australia: IEEE, 2018: 4399-4406.
|