[1] |
谭民, 王硕, 曹志强. 多机器人系统[M]. 北京: 清华大学出版社, 2005.
|
|
TAN M, WANG S, CAO Z Q. Multi-robot systems[M]. Beijing: Tsinghua University Press, 2005. (in Chinese)
|
[2] |
TENG Z F, QIAN L D, HUANG J F. Multi-target localization algorithm for wireless sensor network[J]. Peer-to-Peer Networking and Applications, 2021, 14: 3452-3459.
doi: 10.1007/s12083-021-01193-4
|
[3] |
NGUYEN T G, PHAN T V, NGUYEN H H, et al. An efficient distributed algorithm for target-coverage preservation in wireless sensor networks[J]. Peer-to-Peer Networking and Applications, 2021, 14: 453-466.
doi: 10.1007/s12083-020-00987-2
|
[4] |
刘大鹍, 陈桂芬, 王义君. 自组织网络区域覆盖协作控制算法[J]. 兵工学报, 2020, 41(6): 1131-1139.
doi: 10.3969/j.issn.1000-1093.2020.06.009
|
|
LIU D K, CHEN G F, WANG Y J. Regional coverage cooperative control algorithm for Ad Hoc networks[J]. Acta Armamentarii, 2020, 41(6): 1131-1139. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.06.009
|
[5] |
刘丽萍, 王智, 孙优贤. 无线传感器网络连接问题研究[J]. 兵工学报, 2007, 28(9):1096-1102.
|
|
LIU L P, WANG Z, SUN Y X. Connectivity in wireless sensor networks[J]. Acta Armamentarii, 2007, 28(9):1096-1102. (in Chinese)
|
[6] |
HUANG L, ZHOU M C, HAO K R, et al. A survey of multi-robot regular and adversarial patrolling[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(4): 894-903.
doi: 10.1109/JAS.2019.1911537
|
[7] |
ARRIBAS E, MANCUSO V, CHOLVI V. Coverage optimization with a dynamic network of drone relays[J]. IEEE Transactions on Mobile Computing, 2019, 19(10): 2278-2298.
doi: 10.1109/TMC.7755
URL
|
[8] |
WANG T, HUANG P F, DONG G Q. Modeling and path planning for persistent surveillance by unmanned ground vehicle[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(4): 1615-1625.
doi: 10.1109/TASE.2020.3013288
URL
|
[9] |
WANG T, HUANG P F, DONG G Q. Cooperative persistent surveillance on a road network by multi-UGVs with detection ability[J]. IEEE Transactions on Industrial Electronics, 2021, 69(11):11468-11478.
doi: 10.1109/TIE.2021.3121729
URL
|
[10] |
霍耀彦, 李宗刚, 高溥. 基于节点重要度的多机器人分布式巡逻策略[J]. 计算机应用研究, 2022, 39(2):510-514.
|
|
HUO Y Y, LI Z G, GAO P. Distributed multi-robot patrolling strategy based on importance of nodes[J]. Application Research of Computers, 2022, 39(2): 510-514. (in Chinese)
|
[11] |
WU Y, WU S B, HU X T. Cooperative path planning of UAVs & UGVs for a persistent surveillance task in urban environments[J]. IEEE Internet of Things Journal, 2020, 8(6): 4906-4919.
doi: 10.1109/JIoT.6488907
URL
|
[12] |
WU Y, WU S B, HU X T. Multi-constrained cooperative path planning of multiple drones for persistent surveillance in urban environments[J]. Complex & Intelligent Systems, 2021, 7:1633-1647.
|
[13] |
NIGAM N, KROO I. Control and design of multiple unmanned air vehicles for a persistent surveillance task[C]//Proceedings of the 12nd AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Victoria, British Columbia, Canada:AIAA, 2008:5913.
|
[14] |
NIGAM N, BIENIAWSKI S, KROO I, et al. Control of multiple UAVs for persistent surveillance: algorithm and flight test results[J]. IEEE Transactions on Control Systems Technology, 2011, 20(5):1236-1251.
doi: 10.1109/TCST.2011.2167331
URL
|
[15] |
NIGAM N. The multiple unmanned air vehicle persistent surveillance problem: a review[J]. Machines, 2014, 2(1):13-72.
doi: 10.3390/machines2010013
URL
|
[16] |
SEMPE F. Auto-organisation d'une collectivité de robots: application à l'activité de patrouille en présence de perturbations[D].Paris,France:University of Paris 6, 2004.
|
[17] |
SEMPE F, DROGOUL A. Adaptive patrol for a group of robots[C] //Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003)(Cat. No. 03CH37453).Las Vegas,NV,US:IEEE, 2003, 3: 2865-2869.
|
[18] |
CHU H N, GLAD A, SIMONIN O, et al. Swarm approaches for the patrolling problem, informationpropagation vs. pheromone evaporation[C]//Proceedings of the 19th IEEE International Conference on Tools with Artificial Intelligence.Patras, Greece:IEEE, 2007, 1: 442-449.
|
[19] |
ALAM T, RAHMAN M M, CARRILLO P, et al. Stochastic multi-robot patrolling with limited visibility[J]. Journal of Intelligent & Robotic Systems, 2020, 97:411-429.
|
[20] |
ALMEIDA A L, CASTRO P M, MENEZES T R, et al. Combining idleness and distance to design heuristic agents for the patrolling task[C]//Proceedings of II Brazilian Workshop in Games and Digital Entertainment.Salvador, Brazil: Brazilian Computer Society, 2003: 33-40.
|
[21] |
PORTUGAL D, ROCHA R P. Multi-robot patrolling algorithms:examining performance and scalability[J]. Advanced Robotics, 2013, 27(5): 325-336.
doi: 10.1080/01691864.2013.763722
URL
|
[22] |
欧阳鑫玉, 杨曙光. 基于势场栅格法的移动机器人避障路径规划[J]. 控制工程, 2014, 21(1):134-137.
|
|
OUYANG X Y, YANG S G. Obstacle avoidance path planning of mobile robots based on potential grid method[J]. Control Engineering of China, 2014, 21(1):134-137. (in Chinese)
|
[23] |
MACHADO A, RAMALHO G, ZUCKER J, et al. Multi-agent patrolling:an empirical analysis of alternative architectures[C]//Proceedings of International Workshop on Multi-Agent Systems and Agent-based Simulation. Berlin, Germany:Springer, 2002: 155-170.
|