[1] |
陆利明, 壮云乾, 蒋国昌. 高氮钢的研究和发展[J]. 特殊钢, 1996(3):1-6.
|
|
LU L M, ZHUANG Y Q, JIANG G C. The research and development of high nitrogen steel[J]. Special Steel, 1996(3):1-6. (in Chinese)
|
[2] |
STEIN G, HUCKLENBROICH I. Manufacturing and applications of high nitrogen steels[J]. Materials and Manufacturing Processes, 2004, 19(1): 7-17.
doi: 10.1081/AMP-120027494
URL
|
[3] |
KAPUTKINA L M, SVAZHIN A G, SMARYGINA I V, et al. Corrosion and cavitation resistance of high strength austenitic nitrogen stainless steels in seawater[J]. Steel in Translation, 2019, 49(1):13-19.
doi: 10.3103/S0967091219010078
|
[4] |
KATADA Y, SAGARA M, KOBAYASHI Y, et al. Fabrication of high strength high nitrogen stainless steel with excellent corrosion resistance and its mechanical properties[J]. Materials and Manufacturing Processes, 2004, 19(1): 19-30.
doi: 10.1081/AMP-120027495
URL
|
[5] |
LANG Y P, QU H P, CHEN H T, et al. Research progress and development tendency of nitrogen-alloyed austenitic stainless steels[J]. Journal of Iron and Steel Research International, 2015, 22:91-98.
doi: 10.1016/S1006-706X(15)60015-2
URL
|
[6] |
LI J G, LI H, L Y, et al. The microstructure and mechanical properties of multi-Strand, composite welding-wire welded joints of high nitrogen austenitic stainless steel[J]. Materials (Basel, Switzerland), 2019, 12(18): 2944.
|
[7] |
CUI B, ZHANG H, LIU F D. Effects of shielding gas composition on the welding stability, microstructure and mechanical properties in laser-arc hybrid welding of high nitrogen steel[J]. Materials Research Express, 2018, 5(9):1-17.
|
[8] |
胡秋月. 铬镍奥氏体不锈钢的焊接质量问题及对策[J]. 装备制造技术, 2016(3): 109-110.
|
|
HU Q Y. Welding quality problems and counter measures of chromium nickel austenitic stainless steel[J]. Equipment Manufacturing Technology, 2016(3): 109-110. (in Chinese)
|
[9] |
马良超, 王大锋, 马冰, 等. 不同氮含量焊丝熔化极气体保护焊高氮钢的微观组织与力学性能[J]. 兵工学报, 2021, 42(6): 1303-1311.
doi: 10.3969/j.issn.1000-1093.2021.06.021
|
|
MA L C, WANG D F, MA B, et al. Microstructure and mechanical property of high-nitrogen steel with GMAW welding wires with different nitrogen contents[J]. Acta Armamentarii, 2021, 42(6): 1303-1311. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.06.021
|
[10] |
明珠, 王克鸿, 王伟, 等. 焊丝成分对高氮不锈钢GMAW稳定性及熔滴过渡行为的影响[J]. 焊接学报, 2018, 39(7): 24-28, 130.
doi: 10.12073/j.hjxb.2018390168
|
|
MING Z, WANG K H, WANG W, et al. Effect of welding wire compositions on welding process stability and droplet transfer behavior of high nitrogen stainless steel GMAW[J]. Transactions of the China Welding Institution, 2018, 39(7): 24-28, 130. (in Chinese)
doi: 10.12073/j.hjxb.2018390168
|
[11] |
熊鹰. 高氮钢激光-MAG复合焊工艺及焊缝增氮研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
XIONG Y. Investigation of laser-MAG hybrid welding of high nitrogen steel and nitrogen enrichment in the weld[D]. Harbin: Harbin Institute of Technology, 2018. (in Chinese)
|
[12] |
崔博, 张宏, 刘双宇, 等. 高氮钢复合焊接接头氮含量和气孔控制方法研究[J]. 兵工学报, 2019, 40(11):2311-2318.
doi: 10.3969/j.issn.1000-1093.2019.11.016
|
|
CUI B, ZHANG H, LIU S Y, et al. Research on control method of nitrogen content and porosity in hybrid welding joint of high nitrogen steel[J]. Acta Armamentarii, 2019, 40 ( 11 ): 2311-2318. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.11.016
|
[13] |
黄瀚川, 徐连勇, 荆洪阳, 等. SAF2507超级双相不锈钢CMT+P熔滴过渡特性[J]. 焊接学报, 2019, 40(10): 127-136.
doi: 10.12073/j.hjxb.2019400274
|
|
HUANG H C, XU L Y, JING H Y, et al. Droplet transfer behaviors of SAF2507 super duplex stainless steel using CMT+P welding[J]. Transactions of the China Welding Institution, 2019, 40(10): 127-136. (in Chinese)
|
[14] |
张洪涛, 冯吉才, 胡乐亮. CMT能量输入特点与熔滴过渡行为[J]. 材料科学与工艺, 2012, 20(2):128-132, 139.
|
|
ZHANG H T, FENG J C, HU L L. Energy input and metal transfer behavior of CMT welding process[J]. Materials Science and Technology, 2012, 20(2):128-132, 139. (inChinese)
|
[15] |
WANG Y, ZHU Z Y, GOU G Q, et al. Arc characteristics and metal transfer behavior of CMT+P process for Q235 steel of titanium-steel composite plate[J]. International Journal of Modern Physics B, 2019, 33:1940040.
doi: 10.1142/S021797921940040X
URL
|
[16] |
YANG D Q, FANG H, PENG Y, et al. Investigation of spatters in cold metal transfer + pulse-based wire and arc additive manufacturing of high nitrogen austenitic stainless steel[J]. Journal of Materials Engineering and Performance, 2021, 30(9):6881-6894.
doi: 10.1007/s11665-021-06048-w
|
[17] |
ZHAO G C, WANG Z J, HU S S, et al. Effect of ultrasonic vibration of molten pool on microstructure and mechanical properties of Ti-6Al-4V joints prepared via CMT + P welding[J]. Journal of Manufacturing Processes, 2020, 52:193-202.
doi: 10.1016/j.jmapro.2020.01.045
URL
|
[18] |
张恒铭, 石玗, 李春凯, 等. 极性对细直径自保护药芯焊丝CMT下熔滴过渡及焊缝成形的影响[J]. 焊接学报, 2021, 42(8):75-81.
doi: 10.12073/j.hjxb.20210419001
|
|
ZHANG H M, SHI Y, LI C K, et al. Effect of polarity on droplet transfer and weld formation under small diameter self-shielded flux-cored wire using CMT welding[J]. Transactions of the China Welding Institution, 2021, 42(8):75-81. (in Chinese)
|
[19] |
CUI B, LUO T W, FENG M J. Effect of nitrogen content on the microstructure and properties of the laser-arc hybrid welding joint of high nitrogen steel[J]. Optik, 2021, 243:167478.
doi: 10.1016/j.ijleo.2021.167478
URL
|
[20] |
宋磊, 王敏, 李新, 等. 含锰钢RH真空过程锰的迁移行为[J]. 工程科学学报, 2020, 42(3): 331-339.
|
|
SONG L, WANG M, LI X, et al. Manganese migration behavior in the RH vacuum process of manganese-containing steel[J]. Chinese Journal of Engineering, 2020, 42(3): 331-339. (in Chinese)
|