Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (11): 4119-4132.doi: 10.12382/bgxb.2024.0676
Previous Articles Next Articles
GE Zhongyu, ZHOU Kedong*(), LU Ye, LIU Jinhao
Received:
2024-08-08
Online:
2024-11-26
Contact:
ZHOU Kedong
CLC Number:
GE Zhongyu, ZHOU Kedong, LU Ye, LIU Jinhao. Stress States of Anisotropic Material Gun Barrel by Firing the Projectiles with Different Jacket Materials[J]. Acta Armamentarii, 2024, 45(11): 4119-4132.
Add to citation manager EndNote|Ris|BibTeX
方向 | 弹性模量/ GPa | 屈服极限/ MPa | 抗拉强度/ MPa | 伸长率/ % |
---|---|---|---|---|
径向 | 211 | 1084 | 10.07 | |
周向 | 211 | 945 | 1067 | 15.52 |
轴向 | 213 | 988 | 10.86 |
Table 1 Mechanical properties of 30SiMn2MoV steel barrel
方向 | 弹性模量/ GPa | 屈服极限/ MPa | 抗拉强度/ MPa | 伸长率/ % |
---|---|---|---|---|
径向 | 211 | 1084 | 10.07 | |
周向 | 211 | 945 | 1067 | 15.52 |
轴向 | 213 | 988 | 10.86 |
T/K | E/ GPa | ν | k/ (W·m-1·K-1) | α/ K-1 | cp/ (J·k · ) |
---|---|---|---|---|---|
298 | 211 | 0.277 | 48.00 | 1.15×10-5 | 480 |
473 | 202 | 0.286 | 44.70 | 1.28×10-5 | 553 |
673 | 186 | 0.290 | 43.12 | 1.43×10-5 | 611 |
873 | 168 | 0.277 | 37.47 | 1.51×10-5 | 754 |
973 | 160 | 0.284 | 31.40 | 1.40×10-5 | 849 |
Table 2 Thermophysical parameters of 30SiMn2MoV steel barrel
T/K | E/ GPa | ν | k/ (W·m-1·K-1) | α/ K-1 | cp/ (J·k · ) |
---|---|---|---|---|---|
298 | 211 | 0.277 | 48.00 | 1.15×10-5 | 480 |
473 | 202 | 0.286 | 44.70 | 1.28×10-5 | 553 |
673 | 186 | 0.290 | 43.12 | 1.43×10-5 | 611 |
873 | 168 | 0.277 | 37.47 | 1.51×10-5 | 754 |
973 | 160 | 0.284 | 31.40 | 1.40×10-5 | 849 |
A/MPa | B/MPa | C | n | m | Tm/K |
---|---|---|---|---|---|
112 | 505 | 0.009 | 0.42 | 1.68 | 1331 |
Tr/K | D1 | D2 | D3 | D4 | D5 |
298 | 0.54 | 4.89 | -3.03 | 0.014 | 1.12 |
Table 3 Material parameters of copper jacket
A/MPa | B/MPa | C | n | m | Tm/K |
---|---|---|---|---|---|
112 | 505 | 0.009 | 0.42 | 1.68 | 1331 |
Tr/K | D1 | D2 | D3 | D4 | D5 |
298 | 0.54 | 4.89 | -3.03 | 0.014 | 1.12 |
T/K | E/ GPa | k/ (W·m-1·K-1) | α/ K-1 | cp/ (J·kg-1·K-1) |
---|---|---|---|---|
298 | 123 | 386 | 1.78×10-5 | 383 |
403 | 117 | 400 | 1.78×10-5 | 400 |
603 | 102 | 420 | 1.88×10-5 | 420 |
903 | 90 | 450 | 2.09×10-5 | 450 |
Table 4 Material thermophysical parameters of copper jacket
T/K | E/ GPa | k/ (W·m-1·K-1) | α/ K-1 | cp/ (J·kg-1·K-1) |
---|---|---|---|---|
298 | 123 | 386 | 1.78×10-5 | 383 |
403 | 117 | 400 | 1.78×10-5 | 400 |
603 | 102 | 420 | 1.88×10-5 | 420 |
903 | 90 | 450 | 2.09×10-5 | 450 |
部件 | E/ GPa | ρ/ (kg·m-3) | ν | k/ (W·m-1·K-1) | cp/ (J·kg-1·K-1) |
---|---|---|---|---|---|
铅套 | 17 | 11340 | 0.42 | 40 | 130 |
钢芯 | 190 | 7800 | 0.30 | 35 | 460 |
Table 5 Material parameters of lead sheath and steel core
部件 | E/ GPa | ρ/ (kg·m-3) | ν | k/ (W·m-1·K-1) | cp/ (J·kg-1·K-1) |
---|---|---|---|---|---|
铅套 | 17 | 11340 | 0.42 | 40 | 130 |
钢芯 | 190 | 7800 | 0.30 | 35 | 460 |
最小单 元尺寸/ mm | 单元 数量 | 仿真所需 时间/h | 弹头最大 速度仿真值/ (m·s-1) | 与试验值的 相对误差/ % |
---|---|---|---|---|
0.20 | 556545 | 13.0 | 878.04 | 4.56 |
0.10 | 1113090 | 25.0 | 891.67 | 3.08 |
0.05 | 2226180 | 45.0 | 909.25 | 1.20 |
Table 6 Maximum velocities of projectile under different mesh densities
最小单 元尺寸/ mm | 单元 数量 | 仿真所需 时间/h | 弹头最大 速度仿真值/ (m·s-1) | 与试验值的 相对误差/ % |
---|---|---|---|---|
0.20 | 556545 | 13.0 | 878.04 | 4.56 |
0.10 | 1113090 | 25.0 | 891.67 | 3.08 |
0.05 | 2226180 | 45.0 | 909.25 | 1.20 |
被甲 | 阳线导转侧单元最大应力值 | 阴线单元最大应力值 |
---|---|---|
钢被甲 | 1099MPa (von Mises) -1031MPa (S11) -876MPa (S33) | 689MPa (von Mises) -443MPa (S11) 380MPa (S22) |
铜被甲 | 1045MPa (von Mises) -901MPa (S11) -848MPa (S33) | 636MPa (von Mises) -328MPa (S11) 456MPa (S22) |
Table 7 Maximum stress in chamber throat
被甲 | 阳线导转侧单元最大应力值 | 阴线单元最大应力值 |
---|---|---|
钢被甲 | 1099MPa (von Mises) -1031MPa (S11) -876MPa (S33) | 689MPa (von Mises) -443MPa (S11) 380MPa (S22) |
铜被甲 | 1045MPa (von Mises) -901MPa (S11) -848MPa (S33) | 636MPa (von Mises) -328MPa (S11) 456MPa (S22) |
被甲 | 阳线导转侧单元 最大剪切应力值 | 阳线非导转侧单元 最大剪切应力值 |
---|---|---|
钢被甲 | -295MPa (S12) -94MPa (S13) 228MPa (S23) | 288MPa (S12) -54MPa (S13) -119MPa (S23) |
铜被甲 | -234MPa (S12) 82MPa (S13) 221MPa (S23) | 242MPa (S12) -52MPa (S13) -87MPa (S23) |
Table 8 Maximum shear stress in land element at chamber throat
被甲 | 阳线导转侧单元 最大剪切应力值 | 阳线非导转侧单元 最大剪切应力值 |
---|---|---|
钢被甲 | -295MPa (S12) -94MPa (S13) 228MPa (S23) | 288MPa (S12) -54MPa (S13) -119MPa (S23) |
铜被甲 | -234MPa (S12) 82MPa (S13) 221MPa (S23) | 242MPa (S12) -52MPa (S13) -87MPa (S23) |
[1] |
|
[2] |
|
[3] |
邹利波, 于存贵, 冯广斌, 等. 基于温度修正的弹丸挤进身管过程摩擦模型[J]. 兵工学报, 2021, 42(6): 1148-1156.
doi: 10.3969/j.issn.1000-1093.2021.06.004 |
doi: 10.3969/j.issn.1000-1093.2021.06.004 |
|
[4] |
|
[5] |
黄陈磊, 蒋明飞, 陈莉, 等. 热身管下小口径枪弹弹头壳材料对其膛内运动的影响规律[J]. 兵工学报, 2022, 43(9): 2241-2251.
|
doi: 10.12382/bgxb.2021.0812 |
|
[6] |
黄陈磊, 景春温, 陈莉, 等. 材料热物特性对热身管中弹丸运动状况的影响研究[J]. 火炮发射与控制学报, 2021, 42(3): 8-15.
|
|
|
[7] |
杨宇召, 张晓云, 徐诚. 冷热枪状态下弹枪相互作用的热力耦合分析[J]. 振动与冲击, 2020, 39(10): 44-51.
|
|
|
[8] |
顾祖成, 徐诚, 曹帅. 典型小口径步枪枪管系统冷热枪状态差异三维有限元分析[J]. 弹道学报, 2018, 30(2): 47-53.
doi: 10.12115/j.issn.1004-499X(2018)02-09 |
|
|
[9] |
代程, 曹岩枫, 何龙, 等. 典型小口径自动步枪热散形成原因分析与结果预估[J]. 兵工学报, 2024, 45(3):885-892.
doi: 10.12382/bgxb.2022.0776 |
doi: 10.12382/bgxb.2022.0776 |
|
[10] |
|
[11] |
许辉, 黄陈磊, 王希阔, 等. 枪弹动态挤进阻力理论与实验研究[J]. 兵工学报, 2022, 43(9): 2263-2273.
|
doi: 10.12382/bgxb.2021.0875 |
|
[12] |
许辉, 张瑞洁, 蒋明飞, 等. 弹膛偏移对小口径埋头枪弹挤进动态响应的影响[J]. 兵工学报, 2022, 43(9): 2219-2230.
|
|
|
[13] |
|
[14] |
|
[15] |
|
[16] |
樊红伟, 徐宝池, 樊黎霞, 等. 锻后身管壁厚方向力学性能变化实验研究[J]. 精密成形工程, 2020, 12(6):99-105.
|
|
|
[17] |
HILLR. The mathematical theory of plasticity[M]. Oxford,UK: Oxford University Press, 1950.
|
[18] |
|
[19] |
杨扬, 曾毅, 汪冰峰. 基于Johnson-Cook模型的TC16钛合金动态本构关系[J]. 中国有色金属学报, 2008, 18(3): 505-510.
|
|
|
[20] |
|
[21] |
袁永立, 何国求, 张玉刚, 等. F18覆铜钢拉伸性能与显微结构分析[J]. 金属功能材料, 2012, 19(2): 47-54.
|
|
|
[22] |
沈超, 周克栋, 陆野, 等. 内膛损伤枪管对内弹道性能和弹头出膛状态的影响研究[J]. 兵工学报, 2019, 40(4): 718-727.
doi: 10.3969/j.issn.1000-1093.2019.04.006 |
doi: 10.3969/j.issn.1000-1093.2019.04.006 |
|
[23] |
张小兵. 枪炮内弹道学[M]. 北京: 北京理工大学出版社, 2014.
|
|
|
[24] |
|
[25] |
|
[26] |
冯国铜, 周克栋, 赫雷, 等. 复杂射击规范下枪管温度场数值分析与试验研究[J]. 北京理工大学学报, 2017, 37(10):1003-1008.
|
|
|
[27] |
蓝维彬, 杨臻. 身管温度对步枪射击影响[J]. 兵器装备工程学报, 2017, 38(10):25-29.
|
|
|
[28] |
乔自平, 李峻松, 薛钧. 大口径机枪枪管失效规律研究[J]. 兵工学报, 2015, 36(12): 2231-2240.
doi: 10.3969/j.issn.1000-1093.2015.12.004 |
|
[1] | XU Jing, HU Chundong, LU Hengchang, DENG Yahui, XUE Jun, WEI Xicheng, DONG Han. Research on Friction Behavior of Environmentally Friendly Plating for Gun Barrels [J]. Acta Armamentarii, 2024, 45(2): 651-661. |
[2] | XU Yaofeng, YANG Diao, LIU Pengke, CHEN Qi, GUO Junhang, WANG Jun. Study on Strength Degradation Mechanism of Material on Inner Bore Surface of Gun Barrel [J]. Acta Armamentarii, 2023, 44(5): 1288-1295. |
[3] | MAO Baoquan, ZHAO Qijin, BAI Xianghua, WANG Zhiqian, ZHU Rui, CHEN Chunlin. Review and Prospect of Life Extension Technology for Gun Barrels [J]. Acta Armamentarii, 2023, 44(3): 638-654. |
[4] | YI Huai-jun, LIU Ning, ZHANG Xiang-yan, DING Chuan-jun. Prediction of Gun Barrel Wear Based on Improved Non-equal Interval Grey Model and BP Neural Network [J]. Acta Armamentarii, 2016, 37(12): 2220-2225. |
[5] | XU Ning, WU Yong-hai, WANG Yong-juan, XU Cheng. Barrel Life Prediction of Rotating Barrels Machine Gun Based on Fatigue Damage of Chromium-steel Interface [J]. Acta Armamentarii, 2016, 37(10): 1926-1933. |
[6] | LU Ye, ZHOU Ke-dong, HE Lei, LI Jun-song, HUANG Xue-ying. Influence of Structure Parameters of Forcing Cone on Small Arms Interior Ballistics During Engraving [J]. Acta Armamentarii, 2015, 36(7): 1363-1369. |
[7] | DING Chuan-jun, ZHANG Xiang-yan. Simulation Study of Bearing Band Engraving Process and Interior Ballistic Process Based on Thermo-mechanical Coupling FEA Model [J]. Acta Armamentarii, 2015, 36(12): 2254-2261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||