[1] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
|
[2] |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columbus,OH, US: IEEE, 2014:580-587.
|
[3] |
GIRSHICK R. Fast R-CNN[C]// Proceedings of the IEEE International Conference on Computer Vision.Santiago, Chile: IEEE, 2015:1440-1448.
|
[4] |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
|
[5] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:Unified,real-time object detection[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV, US: IEEE, 2016:779-788.
|
[6] |
REDMON J, FARHADI A. YOLO9000:better,faster,stronger[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,HI, US: IEEE, 2017:7263-7271.
|
[7] |
REDMON J, FARHADI A. YOLOv3:an incremental improvement:arXiv:1804.02767[R/OL]. Ithaca,NY, US: Cornell University, 2018(2018-04-08). https://arxiv.org/abs/1804.02767
|
[8] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4:optimal speed and accuracy of object detection:arXiv:2004.10934[R/OL]. Ithaca,NY, US: Cornell University, 2020(2020-04-23). https://arxiv.org/abs/2004.10934.
|
[9] |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7:trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// Proceedings of the 2023 IEEE/CVF conference on computer vision and pattern recognition.Vancouver,BC, Canada: IEEE, 2023:7464-7475.
|
[10] |
张博尧, 冷雁冰. 基于YOLOv4网络模型的金属表面划痕检测[J]. 兵工学报, 2022, 43(增刊1):214-221.
|
|
ZHANG B Y, LENG Y B. Metal surface scratch detection based on YOLOv4 network model[J]. Acta Armamentarii, 2022, 43(S1):214-221. (in Chinese)
|
[11] |
惠康华, 杨卫, 刘浩翰, 等. 基于YOLOv5的增强多尺度目标检测方法[J]. 兵工学报, 2023, 44(9):2600-2610.
|
|
HUI K H, YANG W, LIU H H, et al. Enhanced multi-scale object detection method based on YOLOv5[J]. Acta Armamentarii, 2023, 44(9):2600-2610. (in Chinese)
|
[12] |
LIU W, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]// Computer Vision-ECCV 2016.Amsterdam, The Netherlands: Springer, 2016:21-37.
|
[13] |
LIU S T, HUANG D, WANG Y H. Learning spatial fusion for single-shot object detection:arXiv:1911.09516[J]. Ithaca,NY, US: Cornell University, 2019(2019-11-25). https://arxiv.org/abs/1911.09516.
|
[14] |
WANG Q F, XU N, HUANG B J, et al. Part-aware refinement network for occlusion vehicle detection[J]. Electronics, 2022, 11(9):1375.
|
[15] |
ZHANG Y, GUO Z Y, WU J Q, et al. Real-time vehicle detection based on improved YOLOV5[J]. Sustainability, 2022, 14(19):12274.
|
[16] |
WANG J D, DONG Y H, ZHAO S R, et al. A high-precision vehicle detection and tracking method based on the attention mechanism[J]. Sensors, 2023, 23(2):724.
|
[17] |
XU Y Q, CHU K B, ZHANG J. Nighttime vehicle detection algorithm based on improved faster-RCNN[J]. IEEE Access, 2023,12:19299-19306.
|
[18] |
WANG Q L, WU B G, ZHU P F, et al. ECA-Net:efficient channel attention for deep convolutional neural networks[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA, US: IEEE, 2020:11534-11542.
|
[19] |
YANG Z M, WANG X L, LI J G. EIoU:an improved vehicle detection algorithm based on vehiclenet neural network[C]// Journal of Physics:Conference Series,2021, 1924(1):012001.
|
[20] |
WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC:a new benchmark and protocol for multi-object detection and tracking[J]. Computer Vision and Image Understanding, 2020,193:102907.
|
[21] |
WANG C Y, LIAO H Y M, YEH I H. Designing network design strategies through gradient path analysis:arXiv:2211.04800[R/OL]. Ithaca,NY, US: Cornell University, 2022(2022-11-09). https://arxiv.org/abs/2211.04800.
|
[22] |
HAN K, WANG Y H, TIAN Q, et al. Ghostnet:more features from cheap operations[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,WA, US: IEEE, 2020:1580-1589.
|
[23] |
BENJUMEA A, TEETI I, CUZZOLIN F, et al. YOLO-Z:improving small object detection in YOLOv5 for autonomous vehicles:arXiv:2112.11798[R/OL]. Ithaca,NY, US: Cornell University, 2021(2021-12-22).
|
[24] |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT, US: IEEE, 2018:7132-7141.
|
[25] |
HOWARD A, SANDLER M, CHU G, et al. Searching for MobileNetv3[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul, Korea (South): IEEE, 2019:1314-1324.
|