Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (5): 240635-.doi: 10.12382/bgxb.2024.0635
Special Issue: 蓝色智慧·兵器科学与技术
Previous Articles Next Articles
WANG Xuan1, SHI Zhangsong1, SHE Bo1,*(), SUN Shiyan1, QIN Fenqi2
Received:
2024-07-26
Online:
2025-05-07
Contact:
SHE Bo
CLC Number:
WANG Xuan, SHI Zhangsong, SHE Bo, SUN Shiyan, QIN Fenqi. Remaining Life Prediction Method Based on BLSTMN-VAE under Degradation Trend Smoothing Constraint[J]. Acta Armamentarii, 2025, 46(5): 240635-.
Add to citation manager EndNote|Ris|BibTeX
算法1: | 本文提出模型 |
---|---|
输入: | 训练集X(t),Y(t),t=1,2,…,k;模型参数:batch size,学习率η,training epochs等 |
输出: | 已训练完毕的模型 |
1: | 数据预处理 |
2: | 初始化基于BLSTM的VAE型特征提取器的参数θ |
3: | 初始化基于退化趋势平滑约束的回归模型的参数ϕ |
4: | while not converged do |
5: | for each batch xt⊆X(t) do: |
6: | //通过基于BLSTM的VAE型特征提取器(E)进行前向传递 |
7: | μ,σ,z=E(xt,θ); |
8: | //基于流形学习的平滑性约束模块 |
9: | 通过式(8)计算平滑性约束损失函数Lsmo; |
10: | //量化XRMSE |
11: | 通过式(13)计算XRMSE; |
12: | //总损失函数 |
13: | 通过式(12)计算总损失函数L; |
14: | //反向传递和优化 |
15: | θ,ϕ=UpdateParameters(θ,ϕ,L,η); |
16: | end for |
17: | end while |
算法1: | 本文提出模型 |
---|---|
输入: | 训练集X(t),Y(t),t=1,2,…,k;模型参数:batch size,学习率η,training epochs等 |
输出: | 已训练完毕的模型 |
1: | 数据预处理 |
2: | 初始化基于BLSTM的VAE型特征提取器的参数θ |
3: | 初始化基于退化趋势平滑约束的回归模型的参数ϕ |
4: | while not converged do |
5: | for each batch xt⊆X(t) do: |
6: | //通过基于BLSTM的VAE型特征提取器(E)进行前向传递 |
7: | μ,σ,z=E(xt,θ); |
8: | //基于流形学习的平滑性约束模块 |
9: | 通过式(8)计算平滑性约束损失函数Lsmo; |
10: | //量化XRMSE |
11: | 通过式(13)计算XRMSE; |
12: | //总损失函数 |
13: | 通过式(12)计算总损失函数L; |
14: | //反向传递和优化 |
15: | θ,ϕ=UpdateParameters(θ,ϕ,L,η); |
16: | end for |
17: | end while |
数据集相关条件 | 数据集 | |||
---|---|---|---|---|
FD001 | FD002 | FD003 | FD004 | |
训练发动机数 | 100 | 260 | 100 | 249 |
测试发动机数 | 100 | 259 | 100 | 248 |
运行条件 | 1 | 6 | 1 | 6 |
故障条件 | 1 | 1 | 2 | 2 |
Table 1 Composition of CMAPSS dataset
数据集相关条件 | 数据集 | |||
---|---|---|---|---|
FD001 | FD002 | FD003 | FD004 | |
训练发动机数 | 100 | 260 | 100 | 249 |
测试发动机数 | 100 | 259 | 100 | 248 |
运行条件 | 1 | 6 | 1 | 6 |
故障条件 | 1 | 1 | 2 | 2 |
传感器 | 符号 | 单调性[ | 预测性[ | 趋势性[ | 总和 |
---|---|---|---|---|---|
3号 | T30 | 0.798 | 0.814 | 0.824 | 2.436 |
4号 | T50 | 0.863 | 0.867 | 0.914 | 2.644 |
7号 | P30 | 0.782 | 0.742 | 0.703 | 2.227 |
9号 | Nc | 0.552 | 0.315 | 0 | 0.867 |
11号 | Ps30 | 0.904 | 0.893 | 0.926 | 2.723 |
12号 | Phi | 0.791 | 0.785 | 0.713 | 2.289 |
15号 | BPR | 0.857 | 0.814 | 0.872 | 2.543 |
Table 2 Parameter applicability indicators of candidate sensors
传感器 | 符号 | 单调性[ | 预测性[ | 趋势性[ | 总和 |
---|---|---|---|---|---|
3号 | T30 | 0.798 | 0.814 | 0.824 | 2.436 |
4号 | T50 | 0.863 | 0.867 | 0.914 | 2.644 |
7号 | P30 | 0.782 | 0.742 | 0.703 | 2.227 |
9号 | Nc | 0.552 | 0.315 | 0 | 0.867 |
11号 | Ps30 | 0.904 | 0.893 | 0.926 | 2.723 |
12号 | Phi | 0.791 | 0.785 | 0.713 | 2.289 |
15号 | BPR | 0.857 | 0.814 | 0.872 | 2.543 |
模型 | FD001 | FD002 | FD003 | FD004 | ||||
---|---|---|---|---|---|---|---|---|
XRMSE | Score | XRMSE | Score | XRMSE | Score | XRMSE | Score | |
SVR | 20.96 | 1380 | 42.00 | 590000 | 21.05 | 1600 | 45.35 | 371000 |
RVR | 23.80 | 1500 | 31.30 | 17400 | 22.37 | 1430 | 34.34 | 26500 |
CNN | 18.45 | 1299 | 30.29 | 13600 | 19.82 | 1600 | 29.16 | 7890 |
LSTM | 16.14 | 338 | 24.49 | 4450 | 16.18 | 852 | 28.17 | 5550 |
BLSTM | 21.14 | 2410 | 18.81 | 2135 | 23.91 | 2418 | 24.89 | 6521 |
Semi-supervised | 12.56 | 231 | 22.73 | 3366 | 12.10 | 251 | 22.66 | 2840 |
DCNN | 12.61 | 274 | 22.36 | 10412 | 12.64 | 284 | 23.31 | 12466 |
VAE+RNN | 15.81 | 326 | 24.12 | 4183 | 14.88 | 722 | 26.54 | 5634 |
AEQRNN | 11.25 | 182 | 19.10 | 3220 | 12.48 | 276 | 20.67 | 4597 |
BLSTM-VAE | 11.42 | 223.82 | 14.92 | 1379.17 | 12.51 | 256.36 | 16.37 | 1845.99 |
本文模型 | 11.22 | 162.68 | 14.78 | 1221.45 | 12.50 | 254.41 | 15.86 | 1759.88 |
Table 3 Comparison of XRMSE and Score values for different models
模型 | FD001 | FD002 | FD003 | FD004 | ||||
---|---|---|---|---|---|---|---|---|
XRMSE | Score | XRMSE | Score | XRMSE | Score | XRMSE | Score | |
SVR | 20.96 | 1380 | 42.00 | 590000 | 21.05 | 1600 | 45.35 | 371000 |
RVR | 23.80 | 1500 | 31.30 | 17400 | 22.37 | 1430 | 34.34 | 26500 |
CNN | 18.45 | 1299 | 30.29 | 13600 | 19.82 | 1600 | 29.16 | 7890 |
LSTM | 16.14 | 338 | 24.49 | 4450 | 16.18 | 852 | 28.17 | 5550 |
BLSTM | 21.14 | 2410 | 18.81 | 2135 | 23.91 | 2418 | 24.89 | 6521 |
Semi-supervised | 12.56 | 231 | 22.73 | 3366 | 12.10 | 251 | 22.66 | 2840 |
DCNN | 12.61 | 274 | 22.36 | 10412 | 12.64 | 284 | 23.31 | 12466 |
VAE+RNN | 15.81 | 326 | 24.12 | 4183 | 14.88 | 722 | 26.54 | 5634 |
AEQRNN | 11.25 | 182 | 19.10 | 3220 | 12.48 | 276 | 20.67 | 4597 |
BLSTM-VAE | 11.42 | 223.82 | 14.92 | 1379.17 | 12.51 | 256.36 | 16.37 | 1845.99 |
本文模型 | 11.22 | 162.68 | 14.78 | 1221.45 | 12.50 | 254.41 | 15.86 | 1759.88 |
[1] |
陈子涵. 基于多模态Transformer的机电作动器剩余寿命预测[J]. 兵工学报, 2023, 44(10): 2920-2931.
doi: 10.12382/bgxb.2022.0581 |
|
|
[2] |
|
[3] |
|
[4] |
许晓东, 唐圣金, 谢建, 等. 随机退化应力作用下设备剩余寿命预测方法[J]. 兵工学报, 2022, 43(3): 712-719.
doi: 10.12382/bgxb.2021.0018 |
doi: 10.12382/bgxb.2021.0018 |
|
[5] |
刘小平, 张立杰, 沈凯凯, 等. 考虑测量误差的步进加速退化试验建模与剩余寿命估计[J]. 兵工学报, 2017, 38(8): 1586-1592.
doi: 10.3969/j.issn.1000-1093.2017.08.017 |
|
|
[6] |
|
[7] |
|
[8] |
|
[9] |
梁伟阁, 闫啸家, 佘博, 等. 基于FA-LN-BiGRU的机械设备剩余寿命区间预测方法[J]. 振动.测试与诊断, 2023, 43(3): 513-519,620-621.
|
|
|
[10] |
朱挺, 陈兆祥, 周笛, 等. 基于Bayesian-LSTM神经网络的热轧轧辊剩余寿命预测及不确定性评估[J]. 机械工程学报, 2024, 60(11): 181-190.
|
|
|
[11] |
|
[12] |
张鲁一航, 杨彦明, 陈永展, 等. 基于VMD-CNN-BiLSTM的变工况涡扇发动机剩余寿命预测[J]. 北京航空航天大学学报. https://doi.org/10.13700/j.bh.1001-5965.2021.0051.
|
|
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
doi: 10.1126/science.290.5500.2323 pmid: 11125150 |
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[1] | LIU Hui, YANG Jun-an, WANG Yi, CAI Xue-liang. An Improved Isometric Mapping Algorithm Based on New Geodesic Distance and Its Application in theFeature Extraction of Acoustic Targets [J]. Acta Armamentarii, 2012, 33(10): 1178-1184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||