[1] |
ISUFI E, GAMA F, SHUMAN D I, et al. Graph filters for signal processing and machine learning on graphs[J/OL]. IEEE Transactions on Signal Processing, 2024,arXiv: 2211.08854.
|
[2] |
LEUS G, MARQUES A G, MOURA J M F, et al. Graph signal processing: history, development, impact, and outlook[J]. IEEE Signal Processing Magazine, 2023, 40(4): 49-60.
|
[3] |
滕克难, 盛安冬. 舰艇编队协同反导作战网络效果度量方法研究[J]. 兵工学报, 2010, 31(9):1247-1253.
|
|
TENG K N, SHENG A D. Research on metric of network effect in ship formation cooperation anti-missile operation[J]. Acta Armamentarii, 2010, 31(9):1247-1253. (in Chinese)
|
[4] |
ORTEGA A. Introduction to graph signal processing[M]. Cambridge, UK: Cambridge University Press, 2022.
|
[5] |
徐冰冰, 岑科廷, 黄俊杰, 等. 图卷积神经网络综述[J]. 计算机学报, 2020, 43(5): 755-780.
|
|
XU B B, CEN K T, HUANG J J, et al. Overview of graph convolutional neural networks[J]. Chinese Journal of Computers, 2020, 43(5): 755-780. (in Chinese)
|
[6] |
COLUCCIA A, D’ALCONZO A, RICCIATO F. Distribution-based anomaly detection via generalized likelihood ratio test: a general maximum entropy approach[J]. Computer Networks, 2013, 57(17): 3446-3462.
|
[7] |
SHARPNACK J, SINGH A, RINALDO A. Changepoint detection over graphs with the spectral scan statistic[C]//Proceedings of A.pngicial Intelligence and Statistics. Brookline, MA, US:PMLR, 2013: 545-553.
|
[8] |
SHARPNACK J, RINALDO A, SINGH A. Detecting anomalous activity on networks with the graph Fourier scan statistic[J]. IEEE Transactions on Signal Processing, 2015, 64(2): 364-379.
|
[9] |
FERRARI A, RICHARD C, VERDUCI L. Distributed change detection in streaming graph signals[C]// Proceedings of 2019 IEEE 8th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing. Piscataway, NJ, US:IEEE, 2019: 166-170.
|
[10] |
KERIVEN N, GARREAU D, POLI I. NEWMA:a new method for scalable model-free online change-point detection[J]. IEEE Transactions on Signal Processing, 2020, 68: 3515-3528.
|
[11] |
LIU Y, YANG X H, ZHOU S H, et al. Simple contrastive graph clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2243-2256.
|
[12] |
BECK A. Introduction to nonlinear optimization:theory, algorithms, and applications with MATLAB[M]. Philadelphia, PA, US: Society for Industrial and Applied Mathematics, 2014.
|
[13] |
DIWEKAR U M. Introduction to applied optimization[M].New York, NY, US:Springer, 2020.
|
[14] |
AKOGLU L, TONG H, KOUTRA D. Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29: 626-688.
|
[15] |
PIMENTEL M A F, CLIFTON D A, CLIFTON L, et al. A review of novelty detection[J]. Signal Processing, 2014, 99: 215-249.
|
[16] |
DONG X W, THANOU D, TONI L, et al. Graph signal processing for machine learning: a review and new perspectives[J]. IEEE Signal Processing Magazine, 2020, 37(6): 117-127.
|
[17] |
COUTINO M, ISUFI E, LEUS G. Advances in distributed graph filtering[J]. IEEE Transactions on Signal Processing, 2019, 67(9):2320-2333.
|
[18] |
SHUMAN D I, NARANG S K, FROSSARD P, et al. The emerging field of signal processing on graphs: extending high-dimensional data analysis to networks and other irregular domains[J]. IEEE Signal Processing Magazine, 2013, 30(3): 83-98.
|
[19] |
BREST J, MAUČEC M S, BOŠKOVIĆ B. Single objective real-parameter optimization: algorithm jSO[C]//Proceedings of 2017 IEEE Congress on Evolutionary Computation. Piscataway, NJ, US:IEEE, 2017: 1311-1318.
|
[20] |
MA X X, WU J, XUE S, et al. A comprehensive survey on graph anomaly detection with deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(12): 12012-12038.
|
[21] |
JAHN J. Introduction to the theory of nonlinear optimization[M].Berlin, Germany:Springer, 2020.
|
[22] |
NT H, MAEHARA T. Revisiting graph neural networks:all we haveislow-pass filters:arXiv:1905.09550[R]. Ithaca, US: Cornell University, 2019:1905.09550.
|
[23] |
STANKOVIĆ L, MANDIC D, DAKOVIĆ M, et al. Vertex-frequency graph signal processing: a comprehensive review[J]. Digital Signal Processing, 2020, 107: 102802.
|
[24] |
WAN L, ZEILER M, ZHANG S X, et al. Regularization of neural networks using dropconnect[C]//Proceedings of International Conference on Machine Learning. Brookline,MA, US:PMLR, 2013: 1058-1066.
|
[25] |
MATNI N, CHANDRASEKARAN V. Regularization for design[J]. IEEE Transactions on Automatic Control, 2016, 61(12):3991-4006.
|
[26] |
THAYYIL J, BIJOY K E. Digital image forgery detection using graph fourier transform[C]//Proceedings of 2020 International Conference on Futuristic Technologies in Control Systems & Renewable Energy. Piscataway, NJ, US: IEEE, 2020: 1-5.
|
[27] |
SHANG C, YANG F, GAO X, et al. Concurrent monitoring of operating condition deviations and process dynamics anomalies with slow feature analysis[J]. AICHE Journal, 2015, 61(11): 3666-3682.
|
[28] |
PERRAUDIN N, PARATTE J, SHUMAN D, et al. GSPBOX:a toolbox for signal processing on graphs:arXiv:1408.5781[R]. Ithaca, US: Cornell University, 2014:1408.5781.
|