Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (11): 3903-3914.doi: 10.12382/bgxb.2023.1182
Previous Articles Next Articles
DING Tianyun1,2, XIA Yi1,2, MEI Zewei1,2, SHAO Xingling2,3,*(), LIU Jun1,2
Received:
2023-12-11
Online:
2024-04-22
Contact:
SHAO Xingling
CLC Number:
DING Tianyun, XIA Yi, MEI Zewei, SHAO Xingling, LIU Jun. A DDPG-based Trajectory Planning Method for Collision Avoidance of Morphing Spacecraft[J]. Acta Armamentarii, 2024, 45(11): 3903-3914.
Add to citation manager EndNote|Ris|BibTeX
训练参数 | 数值 |
---|---|
Critic网络学习率 | 0.001 |
Actor网络学习率 | 0.0001 |
折扣因子 | 0.99 |
抽样样本大小 | 128 |
经验数据集大小 | 1000000 |
探索噪声方差 | 0.1 |
软更新率 | 0.01 |
航向角阈值ψdes/(°) | 5 |
Table 1 Initialization parameters setting for simulation
训练参数 | 数值 |
---|---|
Critic网络学习率 | 0.001 |
Actor网络学习率 | 0.0001 |
折扣因子 | 0.99 |
抽样样本大小 | 128 |
经验数据集大小 | 1000000 |
探索噪声方差 | 0.1 |
软更新率 | 0.01 |
航向角阈值ψdes/(°) | 5 |
类别 | 经纬度偏差/(°) | 剩余航程/km |
---|---|---|
变外形 | (0.0115,-0.0158) | 2.17 |
外形1 | (0.0468,-0.0672) | 9.101 |
外形2 | (0.041,-0.0122) | 4.754 |
外形3 | (0.0581,-0.0345) | 7.514 |
Table 2 Simulation results in Scenario 1
类别 | 经纬度偏差/(°) | 剩余航程/km |
---|---|---|
变外形 | (0.0115,-0.0158) | 2.17 |
外形1 | (0.0468,-0.0672) | 9.101 |
外形2 | (0.041,-0.0122) | 4.754 |
外形3 | (0.0581,-0.0345) | 7.514 |
变外形 | 外形1 | 外形2 | 外形3 |
---|---|---|---|
83% | 87% | 100% | 93% |
Table 3 The minimum allowable detection radius
变外形 | 外形1 | 外形2 | 外形3 |
---|---|---|---|
83% | 87% | 100% | 93% |
[1] |
杜万闪, 周洲, 拜昱, 等. 组合式飞行器多体动力学建模与飞行力学特征[J]. 兵工学报, 2023, 44(8): 2245-2262.
doi: 10.12382/bgxb.2022.0282 |
|
|
[2] |
张晚晴, 余文斌, 李静琳, 等. 基于纵程解析解的飞行器智能横程机动再入协同制导[J]. 兵工学报, 2021, 42(7): 1400-1411.
|
|
|
[3] |
姜斌, 孟庆开, 杨浩. 航天器姿轨控制研究综述:微分几何控制方法[J]. 控制与决策, 2023, 38(8): 2079-2092.
|
|
|
[4] |
陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(5): 629595.
|
|
|
[5] |
吴康盛. 变体飞行器飞行控制与外形决策研究[D]. 长沙: 湖南大学, 2022.
|
|
|
[6] |
张尧, 张婉, 别大卫, 等. 智能变体飞行器研究综述与发展趋势分析[J]. 飞航导弹, 2021(6):14-23.
|
|
|
[7] |
冉茂鹏, 王成才, 刘华华, 等. 变体飞行器控制技术发展现状与展望[J]. 航空学报, 2022, 43(10):432-449.
|
|
|
[8] |
甄子洋, 刘攀, 陆宇平. 变体飞行器智能变形与飞行控制技术研究进展[J]. 南京航空航天大学学报, 2022, 54(6): 995-1006.
|
|
|
[9] |
王子健. 变体飞行器的变形辅助机动控制[D]. 哈尔滨: 哈尔滨工业大学, 2022.
|
|
|
[10] |
|
[11] |
王青, 刘华华. 变体飞行器智能自主决策与控制[J]. 现代防御技术, 2020, 48(6): 5-11.
doi: 10.3969/j.issn.1009-086x.2020.06.002 |
|
|
[12] |
徐小野, 李爱军, 张丛丛, 等. 基于Q学习的变体无人机控制系统设计[J]. 西北工业大学学报, 2012, 30(3):340-344.
|
|
|
[13] |
闫斌斌, 李勇, 戴沛, 等. 基于增强学习的变体飞行器自适应变体策略与飞行控制方法研究[J]. 西北工业大学学报, 2019, 37(4): 656-663.
|
|
|
[14] |
|
[15] |
温暖, 刘正华, 祝令谱, 等. 深度强化学习在变体飞行器自主外形优化中的应用[J]. 宇航学报, 2017, 38(11):1153-1159.
|
|
|
[16] |
|
[17] |
桑晨, 郭杰, 唐胜景, 等. 基于DDPG算法的变体飞行器自主变形决策[J]. 北京航空航天大学学报, 2022, 48(5):910-919.
|
|
|
[18] |
张远, 黄万伟, 聂莹, 等. 一种高速可变形飞行器智能变形决策方法[J]. 宇航学报, 2022, 43(12):1665-1675.
|
|
|
[19] |
吴则良, 叶建川, 王江, 等. 基于深度自动编码器神经网络的飞行器翼型参数降维与优化设计[J]. 兵工学报, 2022, 43(6):1326-1336.
doi: 10.12382/bgxb.2021.0346 |
doi: 10.12382/bgxb.2021.0346 |
|
[20] |
田若岑, 张庆振, 郭云鹤, 等. 基于禁飞区规避的高超声速飞行器再入制导律设计[J]. 空天防御, 2022, 5(2): 65-74.
|
|
|
[21] |
周亮, 王昊宇, 尚海滨, 等. 基于高斯伪谱法的天基再入飞行器滑翔轨迹优化设计研究[J]. 空天防御, 2020, 3(3): 89-95.
|
|
|
[22] |
doi: 10.1109/TCYB.2019.2914717 pmid: 31180878 |
[23] |
|
[24] |
|
[1] | WANG Dongzhen, ZHANG Yue, ZHAO Yu, HUANG Daqing. A UAV Trajectory Optimization Method Based on RRT-Dubins [J]. Acta Armamentarii, 2024, 45(8): 2761-2773. |
[2] | WANG Peichen, YAN Xunliang, NAN Wenjiang, LI Xinguo. A Rapid and Near Analytic Planning Method for Gliding Trajectory under Time Constraints [J]. Acta Armamentarii, 2024, 45(7): 2294-2305. |
[3] | YIN Qiulin, CHEN Qi, WANG Zhongyuan, WANG Qinghai. Rapid Trajectory Planning for Glide-guided Projectiles in Single-gun Multi-shot Scenarios Considering Time-spatial Coordination [J]. Acta Armamentarii, 2024, 45(3): 798-809. |
[4] | JIA Yifei, JIANG Chaoyang. Dynamic Reconfigurable Adaptive UGV Formation System [J]. Acta Armamentarii, 2024, 45(10): 3654-3673. |
[5] | YANG Jing, WU Jinping, LIU Jian, WANG Yongjie, DONG Hanquan. A Semi-supervised Learning Method for Intelligent Decision Making of Submarine Maneuvering Evasion [J]. Acta Armamentarii, 2024, 45(10): 3474-3487. |
[6] | JU Shuang, WANG Jing, WANG Hao, ZHOU Meng. Formation Reconfiguration Control of Multiple Mobile Robots with Severe Actuator Faults Based on GWO-WOA [J]. Acta Armamentarii, 2023, 44(S2): 114-125. |
[7] | FANG Qiuyu, ZHANG Yunlin, MA Zhuangzhuang, SHAO Jinliang. Control Barrier Functions-based Trajectory Planning for Unmanned Ground Vehicles in Unknown Environment [J]. Acta Armamentarii, 2023, 44(S2): 90-102. |
[8] | ZHAO Junmin, HE Haozhe, WANG Shaoqi, NIE Cong, JIAO Yingjie. Joint Trajectory Planning for Multiple UAVs Target Tracking and Obstacle Avoidance in a Complicated Environment [J]. Acta Armamentarii, 2023, 44(9): 2685-2696. |
[9] | HAN Yu, SONG Tao, ZHENG Duo, LIU Xin. Unmanned Aerial Vehicle Cluster Cooperative Guidance Technology Based on Conflict Trigger Mechanism [J]. Acta Armamentarii, 2023, 44(7): 1881-1895. |
[10] | YIN Yiyi, WANG Xiaofang, ZHOU Jian. Q-Learning-based Multi-UAV Cooperative Path Planning Method [J]. Acta Armamentarii, 2023, 44(2): 484-495. |
[11] | ZHOU Xiaotian, REN Hongbin, SU Bo, QI Zhiquan, WANG Yang. Hierarchical Trajectory Planning Algorithm based on Differential Flatness [J]. Acta Armamentarii, 2023, 44(2): 394-405. |
[12] | CAO Hao-zhe, WU Yan-xuan, ZHOU Feng, WANG Zheng-jie. Research on Containment Control of Second-order Nonlinear Multi-agent with Collision Avoidance Mechanism [J]. Acta Armamentarii, 2016, 37(9): 1646-1654. |
[13] | TANG Chuan-lin,HUANG Chang-qiang,DU Hai-wen,HUANG Han-qiao,DING Da-li,LUO Chang. Study of Trajectory Planning for UCAV Formation Cooperative Attack [J]. Acta Armamentarii, 2014, 35(4): 523-530. |
[14] | CHEN Guo-da, JI Shi-ming, JIN Ming-sheng, ZHANG Cai. Layering Shaping Mould Gasbag Polishing Trajectory Planning Method for Equal Residual Figure Error [J]. Acta Armamentarii, 2012, 33(6): 724-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||