[1] |
CHANG L J, GUO Y F, HUANG X Y, et al. Experimental study on the protective performance of bulletproof plate and padding materials under ballistic impact[J]. Materials & Design, 2021, 207: 109841.
|
[2] |
CAI Z H, HUANG X Y, XIA Y, et al. Study on behind helmet blunt trauma caused by high-speed bullet[J]. Appl Bionics Biomech, 2020, 2020: 2348064.
|
[3] |
NURAZZI N M, ASYRAF M R M, KHALINA A, et al. A review on natural fiber reinforced polymer composite for bullet proof and ballistic applications[J]. Polymers (Basel), 2021, 13(4): 646.
|
[4] |
蔡志华, 包正, 王威, 等. 枪弹冲击防弹头盔致头部非贯穿性损伤的数值模拟研究[J]. 兵工学报, 2017, 38(6): 1097-1105.
doi: 10.3969/j.issn.1000-1093.2017.06.008
|
|
CAI Z H, BAO Z, WANG W, et al. Simulation of non-penetrating damage of head due to bullet impact to helmet[J]. Acta Armamentarii, 2017, 38(6): 1097-1105. (in Chinese)
|
[5] |
聂伟晓, 温垚珂, 董方栋, 等. 破片侵彻戴防弹头盔头部靶标钝击效应数值模拟[J]. 兵工学报, 2022, 43(9): 2075-2085.
|
|
NIE W X, WEN Y K, DONG F D, et al. Numerical simulation of bludgeoning effect of fragments penetrating head target wearing bulletproof helmet[J]. Acta Armamentarii, 2022, 43(9): 2075-2085. (in Chinese)
doi: 10.12382/bgxb.2022.0428
|
[6] |
KORKMAZ M, OKUR A, LABANIEH A R, et al. Investigation of the mechanical and forming behaviour of 3D warp interlock carbon woven fabrics for complex shape of composite material[J]. Journal of Industrial Textiles, 2021, 51(S3): 5427S-5465S.
|
[7] |
ROZANT O, BOURBAN P E, MÅNSON J A E. Drapability of dry textile fabrics for stampable thermoplastic preforms[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(11): 1167-1177.
|
[8] |
ZAHID B, JAMSHAID H, RAJPUT A W, et al. Impact properties of continuously textile reinforced double fabric layered riot-police-helmet-shells[J]. Industria Textila, 2021, 72(5): 485-490.
|
[9] |
YANG Y F, CHEN X G. Influence of fabric architecture on energy absorption efficiency of soft armour panel under ballistic impact[J]. Composite Structures, 2019, 224: 111015.
|
[10] |
ZHANG D T, SUN Y, CHEN L, et al. Influence of fabric structure and thickness on the ballistic impact behavior of ultrahigh molecular weight polyethylene composite laminate[J]. Materials & Design, 2014, 54: 315-322.
|
[11] |
LI Y Q, FAN H L, GAO X L. Ballistic helmets: recent advances in materials, protection mechanisms, performance, and head injury mitigation[J]. Composites Part B: Engineering, 2022, 238: 109890.
|
[12] |
MIN S N. Engineering design of composite military helmet shells reinforced by continuous 3D woven fabrics[D]. Manchester, NH, US: The University of Manchester, 2016.
|
[13] |
BARBAGALLO G, MADEO A, MORESTIN F, et al. Modelling the deep drawing of a 3D woven fabric with a second gradient model[J]. Mathematics and Mechanics of Solids, 2016, 22(11): 2165-2179.
|
[14] |
DUFOUR C, BOUSSU F, WANG P, et al. Local strain measurements of yarns inside of 3D warp interlock fabric during forming process[J]. International Journal of Material Forming, 2017, 11(6): 775-788.
|
[15] |
LABANIEH A R, GARNIER C, OUAGNE P, et al. Intra-ply yarn sliding defect in hemisphere preforming of a woven preform[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 432-446.
|
[16] |
PAZMINO J, CARVELLI V, LOMOV S V. Formability of a non-crimp 3D orthogonal weave E-glass composite reinforcement[J]. Composites Part A: Applied Science and Manufacturing, 2014, 61: 76-83.
|
[17] |
HAN M G, CHANG S H. Investigation of the premature failure behavior of a cured draped hemisphere due to the deformation of microstructures of fabric composites[J]. Composites Part B: Engineering, 2019, 164: 758-768.
|
[18] |
MEI M, HE Y J, WEI K, et al. Interlayer interaction characteristics of multi-layered plain woven glass fabric in hemisphere forming[J]. Polymer Composites, 2022, 43(9): 6025-6032.
|
[19] |
JIAO W, CHEN L, XIE J B, et al. Deformation mechanisms of 3D LTL woven preforms in hemisphere forming tests[J]. Composite Structures, 2022, 283: 115156.
|
[20] |
DUFOUR C, WANG P, BOUSSU F, et al. Experimental investigation about stamping behaviour of 3D warp interlock composite preforms[J]. Applied Composite Materials, 2013, 21(5): 725-738.
|
[21] |
HUANG J, BOISSE P, HAMILA N, et al. Experimental and numerical analysis of textile composite draping on a square box. Influence of the weave pattern[J]. Composite Structures, 2021, 267: 113844.
|
[22] |
GUZMAN-MALDONADO E, WANG P, HAMILA N, et al. Experimental and numerical analysis of wrinkling during forming of multi-layered textile composites[J]. Composite Structures, 2019, 208: 213-223.
|
[23] |
KOMEILI M, MILANI A S. On effect of shear-tension coupling in forming simulation of woven fabric reinforcements[J]. Composites Part B: Engineering, 2016, 99: 17-29.
|
[24] |
WANG J, WANG P, HAMILA N, et al. Mesoscopic analyses of the draping of 3D woven composite reinforcements based on macroscopic simulations[J]. Composite Structures, 2020, 250: 112602.
|
[25] |
KHATKAR V, VIJAYALAKSHMI AG S, R N M, et al. Formability behaviour of 3D woven solid structures with varying stuffer binder ratio[J]. Materials Today: Proceedings, 2019, 18: 2753-2759.
|
[26] |
EL SAID B, GREEN S, HALLETT S R. Kinematic modelling of 3D woven fabric deformation for structural scale features[J]. Composites Part A: Applied Science and Manufacturing, 2014, 57: 95-107.
|
[27] |
SHI X P, SUN Y, XU J, et al. Effect of fiber fraction on ballistic impact behavior of 3D woven composites[J]. Polymers, 2023, 15(5): 1170.
|
[28] |
MEI M, HE Y, WEI K, et al. Preforming characteristics and defect mitigation strategies for multi-layered biaxial pillar-stitched non-crimp fabric[J]. International Journal of Solids and Structures, 2023, 267: 112150.
|
[29] |
张素婉. 2.5D 机织物的半球成型性能研究[D]. 天津: 天津工业大学, 2011.
|
|
ZHANG S W. Study on the Formability of 2.5D Woven Fabrics[D]. Tianjin: Tiangong University, 2011. (in Chinese)
|
[30] |
PRODROMOU A G, CHEN J. On the relationship between shear angle and wrinkling of textile composite preforms[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(5): 491-503.
|