Acta Armamentarii ›› 2024, Vol. 45 ›› Issue (4): 1117-1128.doi: 10.12382/bgxb.2022.1089
Previous Articles Next Articles
PAN Zuodong1,2, ZHOU Yue1,*(), GUO Wei2,3,**(
), XU Gaofei2, SUN Yu2
Received:
2022-11-23
Online:
2024-04-30
Contact:
ZHOU Yue, GUO Wei
CLC Number:
PAN Zuodong, ZHOU Yue, GUO Wei, XU Gaofei, SUN Yu. Path Planning of Tidal Flat Tracked Vehicle Based on CB-RRT* Algorithm[J]. Acta Armamentarii, 2024, 45(4): 1117-1128.
Add to citation manager EndNote|Ris|BibTeX
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 56.73 | 58.34 | 0.215 |
Informed RRT* | 55.23 | 55.02 | 0.127 |
Quick-RRT* | 55.16 | 59.80 | 0.139 |
CB-RRT* | 54.80 | 56.51 | 0.024 |
Table 1 Performance comparison of four algorithms in dense obstacle environment
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 56.73 | 58.34 | 0.215 |
Informed RRT* | 55.23 | 55.02 | 0.127 |
Quick-RRT* | 55.16 | 59.80 | 0.139 |
CB-RRT* | 54.80 | 56.51 | 0.024 |
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 59.13 | 39.38 | 0.149 |
Informed RRT* | 61.27 | 37.89 | 0.274 |
Quick-RRT* | 59.22 | 38.86 | 0.116 |
CB-RRT* | 58.23 | 33.76 | 0.037 |
Table 2 Performance comparison of four algorithms in a unique channel environment
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 59.13 | 39.38 | 0.149 |
Informed RRT* | 61.27 | 37.89 | 0.274 |
Quick-RRT* | 59.22 | 38.86 | 0.116 |
CB-RRT* | 58.23 | 33.76 | 0.037 |
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 53.63 | 76.48 | 0.230 |
Informed RRT* | 55.06 | 69.67 | 0.272 |
Quick-RRT* | 52.54 | 72.75 | 0.174 |
CB-RRT* | 52.10 | 71.32 | 0.057 |
Tab.3 Performance comparison of four algorithms in U-shaped obstacle environment
算法 | 路径长度/m | 时间/s | 曲率 |
---|---|---|---|
RRT* | 53.63 | 76.48 | 0.230 |
Informed RRT* | 55.06 | 69.67 | 0.272 |
Quick-RRT* | 52.54 | 72.75 | 0.174 |
CB-RRT* | 52.10 | 71.32 | 0.057 |
算法 | 路径规划序号 | 长度/m | 时间/s | 曲率 |
---|---|---|---|---|
RRT* | 1 | 4229.61 | 96.71 | 0.105 |
2 | 1541.34 | 59.60 | 0.114 | |
Informed RRT* | 1 | 4474.95 | 90.36 | 0.179 |
2 | 1736.04 | 64.28 | 0.137 | |
Quick-RRT* | 1 | 4297.38 | 98.47 | 0.162 |
2 | 1640.25 | 63.91 | 0.130 | |
CB-RRT* | 1 | 4154.26 | 82.04 | 0.047 |
2 | 1534.79 | 37.44 | 0.037 |
Table 4 Performance comparison of four algorithms in dynamic tidal flat environment
算法 | 路径规划序号 | 长度/m | 时间/s | 曲率 |
---|---|---|---|---|
RRT* | 1 | 4229.61 | 96.71 | 0.105 |
2 | 1541.34 | 59.60 | 0.114 | |
Informed RRT* | 1 | 4474.95 | 90.36 | 0.179 |
2 | 1736.04 | 64.28 | 0.137 | |
Quick-RRT* | 1 | 4297.38 | 98.47 | 0.162 |
2 | 1640.25 | 63.91 | 0.130 | |
CB-RRT* | 1 | 4154.26 | 82.04 | 0.047 |
2 | 1534.79 | 37.44 | 0.037 |
[1] |
|
[2] |
|
[3] |
|
[4] |
李东方, 王超, 邓宏彬, 等. 基于人工势场和RRT算法的机器蛇水下三维避障算法[J]. 兵工学报, 2017, 38(增刊1): 205-214.
|
|
|
[5] |
|
[6] |
|
[7] |
|
[8] |
徐唐进, 张安民, 高邈, 等. 动态水深环境下的无人艇路径规划[J]. 测绘科学, 2021, 46(6): 180-189.
|
|
|
[9] |
|
[10] |
|
[11] |
陈秋莲, 蒋环宇, 郑以君. 机器人路径规划的快速扩展随机树算法综述[J]. 计算机工程与应用, 2019, 55(16): 10-17.
doi: 10.3778/j.issn.1002-8331.1905-0061 |
|
|
[12] |
|
[13] |
|
[14] |
张卫波, 肖继亮. 改进RRT算法在复杂环境下智能车路径规划中的应用[J]. 中国公路学报, 2021, 34(3): 225-234.
doi: 10.19721/j.cnki.1001-7372.2021.03.017 |
|
|
[15] |
邓海鹏, 麻斌, 赵海光, 等. 自主驾驶车辆紧急避障的路径规划与轨迹跟踪控制[J]. 兵工学报, 2020, 41(3): 585-594.
doi: 10.3969/j.issn.1000-1093.2020.03.020 |
|
|
[16] |
|
[17] |
徐岩, 崔媛媛. 基于Q-IGA动态拟合贝塞尔曲线的路径规划[J]. 湖南大学学报(自然科学版), 2020, 47(10): 68-75.
|
|
|
[18] |
谭建豪, 潘豹, 王耀南, 等. 基于改进RRT*FN算法的机器人路径规划[J]. 控制与决策, 2021, 36(8): 1834-1840.
|
|
|
[19] |
|
[20] |
|
[21] |
|
[1] | LU Ying, PANG Lichen, CHEN Yusi, SONG Wanying, FU Yanfang. A Swarm Intelligence Algorithm for UAV Path Planning in Urban Warfare [J]. Acta Armamentarii, 2023, 44(S2): 146-156. |
[2] | LI Song, MA Zhuangzhuang, ZHANG Yunlin, SHAO Jinliang. Multi-agent Coverage Path Planning Based on Security Reinforcement Learning [J]. Acta Armamentarii, 2023, 44(S2): 101-113. |
[3] | YIN Yiyi, WANG Xiaofang, ZHOU Jian. Q-Learning-based Multi-UAV Cooperative Path Planning Method [J]. Acta Armamentarii, 2023, 44(2): 484-495. |
[4] | ZHOU Xiaotian, REN Hongbin, SU Bo, QI Zhiquan, WANG Yang. Hierarchical Trajectory Planning Algorithm based on Differential Flatness [J]. Acta Armamentarii, 2023, 44(2): 394-405. |
[5] | FU Jinbo, ZHANG Dong, WANG Mengyang, ZHAO Junmin. Unmanned Aerial Vehicle Path Planning for Improved Target Positioning Accuracy [J]. Acta Armamentarii, 2023, 44(11): 3394-3406. |
[6] | WANG Kang, SI Peng, CHEN Li, LI Zhongxin, WU Zhilin. 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm [J]. Acta Armamentarii, 2023, 44(11): 3382-3393. |
[7] | TAO Junfeng, LIU Hai’ou, GUAN Haijie, CHEN Huiyan, ZANG Zheng. Path Planning of Unmanned Tracked Vehicle Based on Terrain Traversability Estimation [J]. Acta Armamentarii, 2023, 44(11): 3320-3332. |
[8] | ZHANG Lei, FANG Yang-wang, CHAI Dong, YONG Xiao-ju. Cruise Missile Path Planning Based on Improved Quantum Evolutionary Algorithm [J]. Acta Armamentarii, 2014, 35(11): 1820-1827. |
[9] | FU Yang-guang, ZHOU Cheng-ping2, HU Han-ping2. Research on Differential Evolution Algorithm for Path Planning for Unmanned Aerial Vehicle inOcean Environment [J]. Acta Armamentarii, 2012, 33(3): 295-300. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||