Acta Armamentarii ›› 2022, Vol. 43 ›› Issue (11): 2965-2980.doi: 10.12382/bgxb.2021.0659
• Comprehensive Review • Previous Articles
CHEN Yudi1, XIONG Zhi1,2, LIU Jianye1,2, YANG Chuang1, CHAO Lijun1, PENG Yang3
Online:
2022-06-23
CLC Number:
CHEN Yudi, XIONG Zhi, LIU Jianye, YANG Chuang, CHAO Lijun, PENG Yang. Review of Brain-inspired Navigation Technology Based on Hippocampal Formation for Unknown Complex Environments[J]. Acta Armamentarii, 2022, 43(11): 2965-2980.
Add to citation manager EndNote|Ris|BibTeX
[1] NARAZAKI Y, HOSKERE V, CHOWDHARY G, et al. Vision-based navigation planning for autonomous post-earthquake inspection of reinforced concrete railway viaducts using unmanned aerial vehicles [J]. Automation in Construction, 2022, 137: 104214. [2] WU D, HE J, HAN K, et al. Cognitive navigation and its thought of brain-inspired realization in unmanned combat platform [J]. Journal of Air Force Engineering University Natural Science Edition, 2018, 19(6): 33-38. [3] 杨 闯,刘建业,熊智,等.由感知到动作决策一体化的类脑导航技术研究现状与未来发展[J].航空学报,2020,41(1):023280. YANG C, LIU J Y, XIONG Z, et al. Brain-inspired navigation technology integrating perception and action decision:a review and outlook [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023280. (in Chinese) [4] SUZUKI W A. Episodic memory signals in the rat hippocampus [J]. Neuron, 2003, 40(6): 1055-1056. [5] WITTER M P, MOSER E I. Spatial representation and the architecture of the entorhinal cortex [J]. Trends in Neurosciences, 2006, 29(12): 671-678. [6] VAN STRIEN N, CAPPAERT N, WITTER M. The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network [J]. Nature Reviews Neuroscience, 2009, 10(4): 272-282. [7] HAINMUELLER T, BARTOS M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories [J]. Nature Reviews Neuroscience, 2020, 21(3): 153-168. [8] LATHE R, SINGADIA S, JORDAN C, et al. The interoceptive hippocampus: mouse brain endocrine receptor expression highlights a dentate gyrus (DG)-cornu ammonis (CA) challenge-sufficiency axis [J]. PloS one, 2020, 15(1): e0227575. [9] LIN X X, AMARLRAJ M, BLANTON C, et al. Non-canonical projections from ventral CA1 and subicular complex to CA3 augments the feedforward hippocampal trisynaptic pathway [J]. bioRxiv, 2021. [EB/OL].(2021-02-01)[2021-10-07],https:∥www.researchgate.net/publication/348987832_Non-Canonical_Projections_from_Ventral_CA1_and_Subicular_Complex_to_CA3_Augments_the_Feedforward_Hippocampal_Trisynaptic_Pathway. [10] QASIM S E, FRIED I, JACOBS J. Phase precession in the human hippocampus and entorhinal cortex [J]. Cell, 2021, 184(12): 3242-3255. e3210. [11] MOSER E I, ROUDI Y, WITTER M P, et al. Grid cells and cortical representation [J]. Nature Reviews Neuroscience, 2014, 15(7): 466-481. [12] O'KEEFE J, DOSTROVSKY J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat [J]. Brain research, 1971, 34(1): 171-175. [13] O'KEEFE J, CONWAY D H. Hippocampal place units in the freely moving rat: why they fire where they fire [J]. Experimental Brain Research, 1978, 31(4): 573-590. [14] BJERKNES T L, DAGSLOTT N C, MOSER E I, et al. Path integration in place cells of developing rats [J]. Proceedings of the National Academy of Sciences, 2018, 115(7): E1637-E1646. [15] GO M A, ROGERS J, GAVA G P, et al. Place cells in head-fixed mice navigating a floating real-world environment [J]. Frontiers in Cellular Neuroscience, 2021, 15(19): 1-16. [16] MITTELSTAEDT H. Triple-loop model of path control by head direction and place cells [J]. Biological Cybernetics, 2000, 83(3): 261-270. [17] JAYAKUMAR R P, MADHAV M S, SAVELLI F, et al. Recalibration of path integration in hippocampal place cells [J]. Nature, 2019, 566(7745): 533-537. [18] TAUBE J S. Head direction cells recorded in the anterior thalamic nuclei of freely moving rats [J]. Journal of Neuroscience, 1995, 15(1): 70-86. [19] KYRIACOU T. Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells [J]. Journal of Computational Neuroscience, 2012, 32(2): 281-295. [20] HAFTING T, FYHN M, MOLDEN S, et al. Microstructure of a spatial map in the entorhinal cortex [J]. Nature, 2005, 436(7052): 801-806. [21] BOCCARA C N, SARGOLINI F, THORESEN V H, et al. Grid cells in pre-and parasubiculum [J]. Nature Neuroscience, 2010, 13(8): 987-994. [22] FYHN M, HAFTING T, TREVES A, et al. Hippocampal remapping and grid realignment in entorhinal cortex [J]. Nature, 2007, 446(7132): 190-194. [23] STENSOLA H, STENSOLA T, SOLSTAD T, et al. The entorhinal grid map is discretized [J]. Nature, 2012, 492(7427): 72-78. [24] MILFORD M J, WILES J, WYETH G F. Solving navigational uncertainty using grid cells on robots [J]. PLoS Computational Biology, 2010, 6(11): e1000995. [25] ERDEM U M, HASSELMO M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells [J]. European Journal of Neuroscience, 2012, 35(6): 916-931. [26] MONACO J D, ABBOTT L F. Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping [J]. Journal of Neuroscience, 2011, 31(25): 9414-9425. [27] 杨 闯,刘建业,熊智,等.基于多尺度网格细胞模型的无人机类脑矢量导航方法[J].2020,28(2):179-185. YANG C, LIU J, XIONG Z, et al. Brain-inspired vector navigation method based on model of multi-scale grid cells [J]. Journal of Chinese Inertial Technology, 2020, 28(2): 179-185. (in Chinese) [28] YANG C, XIONG Z, LIU J Y, et al. A Path integration approach based on multi scale grid cells for large scale navigation [J]. IEEE Transactions on Cognitive and Developmental Systems, 2021: 1-12 in press. [29] SOLSTAD T, BOCCARA C N, KROPFF E, et al. Representation of geometric borders in the entorhinal cortex [J]. Science, 2008, 322(5909): 1865-1868. [30] LEVER C, BURTON S, JEEWAJEE A, et al. Boundary vector cells in the subiculum of the hippocampal formation [J]. Journal of Neuroscience, 2009, 29(31): 9771-9777. [31] KRUPIC J, BURGESS N, O'KEEFE J. Neural representations of location composed of spatially periodic bands [J]. Science, 2012, 337(6096): 853-857. [32] DOLL L, SHEYNIKHOVICH D, GIRARD B, et al. Path planning versus cue responding: a bio-inspired model of switching between navigation strategies [J]. Biological Cybernetics, 2010, 103(4): 299-317. [33] BARRERA A, TEJERA G, LLOFRIU M, et al. Learning spatial localization: from rat studies to computational models of the hippocampus [J]. Spatial Cognition & Computation, 2015, 15(1): 27-59. [34] MHATRE H, GORCHETCHNIKOV A, GROSSBERG S. Grid cell hexagonal patterns formed by fast self-organized learning within entorhinal cortex [J]. Hippocampus, 2012, 22(2): 320-334. [35] EDVARDSEN V, BICANSKI A, BURGESS N. Navigating with grid and place cells in cluttered environments [J]. Hippocampus, 2020, 30(3): 220-232. [36] TEJERA G, LLOFRIU M, BARRERA A, et al. Bio-inspired robotics: a spatial cognition model integrating place cells, grid cells and head direction cells [J]. Journal of Intelligent & Robotic Systems, 2018, 91(1): 85-99. [37] LIU G L, LI X, SUN M N M, et al. An advantage actor-critic algorithm with confidence exploration for open information extraction [C]∥Proceedings of the 2020 Siam International Conference on Data Mining. Philadelphia, USA: SIAM, 2020: 217-225. [38] ARLEO A, SMERALDI F, GERSTNER W. Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning [J]. IEEE Transactions on Neural Networks, 2004, 15(3): 639-652. [39] MARR D. Simple memory: a theory for archicortex [J]. Philosophical transactions of the Royal Society of London Series B, Biological Sciences, 1971, 262(841): 23-81. [40] 刘建业, 杨闯, 熊智, 等. 无人机类脑吸引子神经网络导航技术 [J]. 导航定位与授时, 2019, 6(5): 52-60. LIU J Y, YANG C, XIONG Z, et al. Attractor neural network-based brain-inspired navigation technology for UAV[J]. Navigation Positioning and Timing, 2019, 6(5): 52-60. (in Chinese) [41] WU S, WONG K Y M, FUNG C C A, et al. Continuous Attractor neural networks: candidate of a canonical model for neural information representation [J]. F1000Research, 2016, 5: 1-9. [42] HULSE B K, JAYARAMAN V. Mechanisms underlying the neural computation of head direction [J]. Annual Review of Neuroscience, 2020, 43: 31-54. [43] STRINGER S, TRAPPENBERG T, ROLLS E, et al. Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells [J]. Network: Computation in Neural Systems, 2002, 13(2): 217-242. [44] STRINGER S N, ROLLS E T, TRAPPENBERG T P, et al. Self-organizing continuous attractor networks and path integration: two-dimensional models of place cells [J]. Network-Computation in Neural Systems, 2002, 13(4): 429-446. [45] YU F W, SHANG J G, HU Y J, et al. NeuroSLAM: a brain-inspired SLAM system for 3D environments [J]. Biological Cybernetics, 2019, 113(5-6): 515-545. [46] GUANELLA A, KIPER D, VERSCHURE P. A model of grid cells based on a twisted torus topology [J]. International Journal of Neural Systems, 2007, 17(04): 231-240. [47] BURAK Y, FIETE I R. Accurate path integration in continuous attractor network models of grid cells [J]. Plos Computational Biology, 2009, 5(2): 1-17. [48] KOENIG J, LINDER A N, LEUTGEB J K, et al. The spatial periodicity of grid cells is not sustained during reduced theta oscillations [J]. Science, 2011, 332(6029): 592-595. [49] BURGESS N, BARRY C, O'KEEFE J. An oscillatory interference model of grid cell firing [J]. Hippocampus, 2007, 17(9): 801-812. [50] ZILLI E A, HASSELMO M E. Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing [J]. Journal of Neuroscience, 2010, 30(41): 13850-13860. [51] ERDEM U M, HASSELMO M. A goal-directed spatial navigation model using forward trajectory planning based on grid cells [J]. European Journal of Neuroscience, 2012, 35(6): 916-931. [52] YARTSEV M M, WITTER M P, ULANOVSKY N. Grid cells without theta oscillations in the entorhinal cortex of bats [J]. Nature, 2011, 479(7371): 103-107. [53] TAVANAEI A, GHODRATI M, KHERADPISHEH S R, et al. Deep learning in spiking neural networks [J]. Neural Networks, 2019, 111: 47-63. [54] GHOSH-DASTIDAR S, ADELI H. Third generation neural networks: spiking neural networks [C]∥Proceedings of the 2nd International Workshop on Advanced Computational Intelligence. Berlin, Germany: Springer-Verlag, 2009: 167-178. [55] WU Y C, FENG J W. Development and application of artificial neural network [J]. Wireless Personal Communications, 2018, 102(2): 1645-1656. [56] HUDEREK D, SZCZESNY S, RATO R. Spiking neural network based on cusp catastrophe theory [J]. Found Comput Decis Sci, 2019, 44(3): 273-284. [57] ALMOMANI A, ALAUTHMAN M, ALWESHAH M, et al. A comparative study on spiking neural network encoding schema: implemented with cloud computing [J]. Cluster Computing, 2019, 22(2): 419-433. [58] HERIKSTAD R, BAKER J, LACHAUX J-P, et al. Natural movies evoke spike trains with low spike time variability in cat primary visual cortex [J]. Journal of Neuroscience, 2011, 31(44): 15844-15860. [59] SINHA R, HOON M, BAUDIN J, et al. Cellular and circuit mechanisms shaping the perceptual properties of the primate fovea [J]. Cell, 2017, 168(3): 413-426. e412. [60] SRIVASTAVA K H, HOLMES C M, VELLEMA M, et al. Motor control by precisely timed spike patterns [J]. Proceedings of the National Academy of Sciences, 2017, 114(5): 1171-1176. [61] TANG C, CHEHAYEB D, SRIVASTAVA K, et al. Millisecond-scale motor encoding in a cortical vocal area [J]. PLoS Biol, 2014, 12(12): e1002018. [62] HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its application to conduction and excitation in nerve [J]. The Journal of Physiology, 1952, 117(4): 500-544. [63] JOLIVET R, TIMOTHY J, GERSTNER W. The spike response model: a framework to predict neuronal spike trains [C]∥Artificial Neural Networks and Neural Information Processing—ICANN/ICONIP 2003. Berlin, Germany: Springer, 2003: 846-853. [64] IZHIKEVICH E M. Simple model of spiking neurons [J]. IEEE Transactions on Neural Networks, 2003, 14(6): 1569-1572. [65] DELORME A, GAUTRAIS J, VAN RULLEN R, et al. SpikeNET: A simulator for modeling large networks of integrate and fire neurons [J]. Neurocomputing, 1999, 26-27(99): 989-996. [66] CLAWSON T S, FERRARI S, FULLER S B, et al. Spiking neural network (SNN) control of a flapping insect-scale robot [C]∥Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC). Piscataway, NJ,US: IEEE, 2016: 3381-3388. [67] LORENZ G, JULIEN V, HAMKER F H. Predictive place-cell sequences for goal-finding emerge from goal memory and the cognitive map: a computational model [J]. Frontiers in Computational Neuroscience, 2017, 11(84): 1-19. [68] TANG G Z, MICHMIZOS K P. Gridbot: An autonomous robot controlled by a spiking neural network mimicking the brain's navigational system [C]∥Proceedings of the International Conference on Neuromorphic Systems. New York, NY,US: ACM, 2018: 1-8. [69] SHIM M S, LI P. Biologically inspired reinforcement learning for mobile robot collision avoidance [C]∥Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ,US: IEEE, 2017: 3098-3105. [70] SMITH R C, CHEESEMAN P. On the representation and estimation of spatial uncertainty [J]. The International Journal of Robotics Research, 1986, 5(4): 56-68. [71] LI Z H, WU H Z. A cropping robust geometric distortion correcting algorithm for watermarked image based on SIFT [C]∥Proceedings of the 2009 2nd International Congress on Image and Signal Processing. Piscataway, NJ,US: IEEE, 2009: 1447-1450. [72] SON J H, OH S H, DONG-HWAN H. Kalman filter-based navigation algorithm for multi-radio integrated navigation system [J]. Journal of Positioning, Navigation, and Timing, 2020, 9(2): 99-115. [73] KANG S, HAN K J, YU M J. Robust immune particle filter design for terrain-referenced navigation with interferometric radar altimeter [J]. Iet Radar Sonar and Navigation, 2020, 14(9): 1402-1409. [74] AMMAR A, BENNACEUR H, CH ARI I, et al. Relaxed Dijkstra and A* with linear complexity for robot path planning problems in large-scale grid environments [J]. Soft Computing, 2016, 20(10): 4149-4171. [75] DHULKEFL E J, DURDU A. Path planning algorithms for unmanned aerial vehicles [J]. International Journal of Trend in Scientific Research and Development (ijtsrd), 2019, 3(4): 359-362. [76] MAINI P, SUJIT P. Path planning for a uav with kinematic constraints in the presence of polygonal obstacles [C]∥Proceedings of 2016 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway, NJ,US: IEEE, 2016: 62-67. [77] QU Y, ZHANG Y T, ZHANG Y M. A global path planning algorithm for fixed-wing UAVs [J]. Journal of Intelligent & Robotic Systems, 2018, 91(3/4): 691-707. [78] MONTIEL O, OROZCO-ROSAS U, SEP LVEDA R. Path planning for mobile robots using Bacterial Potential Field for avoiding static and dynamic obstacles [J]. Expert Systems with Applications, 2015, 42(12): 5177-5191. [79] CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory [J]. International Journal of Systems Science, 2016, 47(6): 1407-1420. [80] DAS M S, SANYAL S, MANDAL S. Navigation of multiple robots in formative manner in an unknown environment using artificial potential field based path planning algorithm [J]. Ain Shams Engineering Journal, 2022, 13(5): 101675. [81] AKKA K, KHABER F. Mobile robot path planning using an improved ant colony optimization [J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 1729881418774673. [82] ALI H, GONG D W, WANG M, et al. Path planning of mobile robot with improved ant colony algorithm and MDP to produce smooth trajectory in grid-based environment [J]. Frontiers in Neurorobotics, 2020, 14(44): 1-13. [83] LUO Q, WANG H B, ZHENG Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm [J]. Neural Computing and Applications, 2020, 32(6): 1555-1566. [84] LAMINI C, BENHLIMA S, ELBEKRI A. Genetic algorithm based approach for autonomous mobile robot path planning [J]. Procedia Computer Science, 2018, 127: 180-189. [85] ROBERGE V, TARBOUCHI M, LABONT G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU [J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2105-2117. [86] ELHOSENY M, THARWAT A, HASSANIEN A E. Bezier curve based path planning in a dynamic field using modified genetic algorithm [J]. Journal of Computational Science, 2018, 25: 339-350. [87] THARWAT A, ELHOSENY M, HASSANIEN A E, et al. Intelligent Bézier curve-based path planning model using chaotic particle swarm optimization algorithm [J]. Cluster Computing, 2019, 22(2): 4745-4766. [88] SHAO S K, PENG Y, HE C L, et al. Efficient path planning for UAV formation via comprehensively improved particle swarm optimization [J]. ISA Transactions, 2020, 97: 415-430. [89] LI J Q, DENG G Q, LUO C W, et al. A hybrid path planning method in unmanned air/ground vehicle (UAV/UGV) cooperative systems [J]. IEEE Transactions on Vehicular Technology, 2016, 65(12): 9585-9596. [90] MANDAL S. How do animals find their way back home? a brief overview of homing behavior with special reference to social Hymenoptera [J]. Insectes Sociaux, 2018, 65(4): 521-536. [91] TOLMAN E C, HONZIK C H. Introduction and removal of reward, and maze performance in rats [J]. University of California Publications in Psychology, 1930, 4: 257-275. [92] TOLMAN E C. Cognitive maps in rats and men [J]. Psychological Review, 1948, 55(4): 189-208. [93] YAMANAKA S, MORIOKA K. Mobile robot navigation using hybrid simplified map with relationships between places and grid maps [J]. IFAC Proceedings Volumes, 2012, 45(22): 616-621. [94] JACOBSON A, CHEN Z, MILFORD M. Leveraging variable sensor spatial acuity with a homogeneous, multi-scale place recognition framework [J]. Biological Cybernetics, 2018, 112(3): 209-225. [95] DATTA A, YOW K C. A fast learning neural network for oriented visual place map based robot navigation [C]∥Proceedings of IEEE International Conference on Systems. Piscataway, NJ,US: IEEE, 2011: 2507-2514. [96] CUNEO J, L. BARBONI N B, CASTILLO M, et al. ARM-cortex M3-based two-wheel robot for assessing grid cell model of medial entorhinal cortex: progress towards building robots with biologically inspired navigation-cognitive maps [J]. Journal of Robotics, 2017: 8069654. [97] TANG G Z, MICHMIZOS K P. Real-time mapping on a neuromorphic processor [C]∥Proceedings of NICE '20: Neuro-inspired Computational Elements Workshop. New York, NY,US: ACM, 2020: 20-23. [98] BALL D, HEATH S, WILES J, et al. OpenRatSLAM: an open source brain-based SLAM system [J]. Autonomous Robots, 2013, 34(3): 149-176. [99] ZENG T P, TANG F Z, JI D X, et al. NeuroBayesSLAM: neurobiologically inspired Bayesian integration of multisensory information for robot navigation [J]. Neural Networks, 2020, 126(2020): 21-35. [100] SAPUTRA A A, TODA Y, BOTZHEIM J, et al. Neuro-activity-based dynamic path planner for 3-d rough terrain [J]. IEEE Transactions on Cognitive and Developmental Systems, 2017, 10(2): 138-150. [101] NAGHIZADEH A, BERENJIAN S, MARGOLIS D J, et al. GNM: GridCell navigational model [J]. Expert Systems with Applications, 2020, 148: 113217. [102] CORNEIL D S, GERSTNER W. Attractor network dynamics enable preplay and rapid path planning in maze-like environments [C]∥Proceedings of Advances in Neural Information Processing Systems. California, US: NIPS 2015: 1684-1692. [103] CUPERLIER N, QUOY M, GAUSSIER P. Neurobiologically Inspired mobile robot navigation and planning [J]. Frontiers in Neurorobotics, 2007, 1(3): 1-15. [104] HUANG Y Y, HUANG H P, HUANG Y C, et al. Flyintel-a platform for robot navigation based on a brain-inspired spiking neural network [C]∥Proceedings of 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS). New York, NY,US: IEEE, 2019: 219-220. [105] WEI H C, SAPUTRA A A, KUBOTA N. A neuro-based network for on-line topological map building and dynamic path planning [C]∥Proceedings of 2017 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ,US: IEEE, 2017: 2805-2810. [106] SHIM V A, BO T, YUAN M, et al. Direction-driven navigation using cognitive map for mobile robots [C]∥Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014). Piscataway, NJ,US: IEEE, 2014: 2639-2646. [107] YU N G, ZHAI Y J, YUAN Y H, et al. A bionic robot navigation algorithm based on cognitive mechanism of hippocampus [J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1640-1652. 下1篇留版 |
[1] | PAN Zuodong, ZHOU Yue , GUO Wei, XU Gaofei, SUN Yu. Path Planning of Tidal Flat Tracked Vehicle Based on CB-RRT* Algorithm [J]. Acta Armamentarii, 2024, 45(4): 1117-1128. |
[2] | JI Guang, HAO Jianguo, ZHANG Zhenwei. Design Scheme of Virtual Twin System for UAV Combat [J]. Acta Armamentarii, 2022, 43(8): 1902-1912. |
[3] | HU Zhiyuan, WANG Zheng, YANG Yang, YIN Yang. Three-dimensional Global Path Planning for UUV Based on Artificial Fish Swarm and Ant Colony Algorithm [J]. Acta Armamentarii, 2022, 43(7): 1676-1684. |
[4] | GUO Wei, WU Kai, ZHOU Yue, SUN Hongming, XU Gaofei, GAO Sen. Path Planning of Deep-sea Landing Vehicle Based on Ant Colony Algorithm [J]. Acta Armamentarii, 2022, 43(6): 1387-1394. |
[5] | CHEN Jun, ZHANG Yue, CHEN Xiaowei, TONG Yan. FGCM-based Modeling Method of Intelligent Situation Awareness in Complex Battlefield [J]. Acta Armamentarii, 2022, 43(5): 1093-1106. |
[6] | ZHANG Tao, XIANG Qi, ZHENG Wanwen, SUN Yuxiang, ZHOU Xianzhong. Application of Path Planning Based on Improved A* Algorithm in War Gaming of Naval Warfare [J]. Acta Armamentarii, 2022, 43(4): 960-968. |
[7] | ZHAO Pengcheng, SONG Baowei, MAO Zhaoyong, DING Wenjun. Path Planning for UUV Underwater Recovery based on Improved Composite Adaptive Genetic Algorithm [J]. Acta Armamentarii, 2022, 43(10): 2598-2608. |
[8] | TIAN Hongqing, WANG Jianqiang, HUANG Heye, DING Feng. Probabilistic Roadmap Method for Path Planning of Intelligent Vehicle Based on Artificial Potential Field Model in Off-roadEnvironment [J]. Acta Armamentarii, 2021, 42(7): 1496-1505. |
[9] | DAI Tian, MIAO Lingjuan, SHAO Haijun. A Multi-beam Sonar-based Graph SLAM Method [J]. Acta Armamentarii, 2020, 41(7): 1384-1392. |
[10] | DENG Haipeng, MA Bin, ZHAO Haiguang, L Liang, LIU Yu. Path Planning and Tracking Control of Autonomous Vehicle for Obstacle Avoidance [J]. Acta Armamentarii, 2020, 41(3): 585-594. |
[11] | SUN Pengyao, HUANG Yanyan, PAN Yao. Path Planning of Mobile Robots Based on Improved Potential Field Algorithm [J]. Acta Armamentarii, 2020, 41(10): 2106-2121. |
[12] | LIU Hao,ZHANG Ce,DING Wentao. Joint Fire Attack Mission Planning Method Based on Intelligent Confrontation Evolution [J]. Acta Armamentarii, 2019, 40(6): 1287-1296. |
[13] | HUANG Tao, LIU Zhi-bing, WANG Xi-bin, PAN Lin, YAN Zheng-hu, LENG Shou-yang. Effect of Inclination Angle of Cutter Shaft on Machining Deformation of Thin-walled Blade [J]. Acta Armamentarii, 2018, 39(3): 577-583. |
[14] | LI Da-peng, LIANG Wei. An Adaptive Grid-based Clustering Algorithm for Noncooperative Targets [J]. Acta Armamentarii, 2017, 38(11): 2166-2175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||