[1] 张合, 李长生. 灵巧引信设计基础理论与应用[M]. 北京:北京理工大学出版社, 2019. ZHANG H, LI C S. The basic design theory and application of smart fuze[M]. Beijing: Beijing Institute of Technology Press, 2019. (in Chinese) [2] 陈小伟, 李继承. 刚性弹侵彻深度和阻力的比较分析[J]. 爆炸与冲击, 2009, 29(6):584-589. CHEN X W, LI J C. Analysis of penetration depth and resistive force in the deep penetration of a rigid projectile[J]. Explosion and Shock Waves, 2009, 29(6):584-589. (in Chinese) [3] WARREN T L, FORRESTAL M J, RRANDLES P W. Evaluation of large amplitude deceleration data from projectile penetration into concrete targets[J]. Experimental Mechanics, 2014, 54(2): 241-253. [4] 武海军, 张雪岩, 张爽, 等. 刚性弹体侵彻/贯穿有限厚钢筋混凝土靶的弹道预测[J]. 兵工学报, 2020, 41(增刊2):13-26. WU H J, ZHANG X Y, ZHANG S, et al. Prediction of trajectory of rigid projectile penetrating/perforating finite-thick reinforced concrete target[J]. Acta Armamentarii, 2020, 41(S2):13-26.(in Chinese) [5] 曹娟, 张合, 王晓峰. 硬目标侵彻引信隔离防护优化研究[J]. 振动与冲击, 2015, 34(24): 192-196. CAO J, ZHANG H, WANG X F. Optimization of isolated protection for the hard-target penetration fuze[J]. Journal of Vibration and Shock, 2015, 34(24): 192-196. (in Chinese) [6] 王礼立. 冲击动力学进展[M]. 合肥:中国科学技术大学出版社, 1992:96-99. WANG L L. Advances in impact dynamics[M]. Hefei: University of Science and Technology of China Press, 1992:96-99. (in Chinese) [7] 陈鲁疆, 熊继军, 张文栋, 等. 侵彻过程中弹载测试装置防护技术研究及仿真[J]. 弹箭与制导学报, 2006, 26(2):224-226. CHEN L J, XIONG J J, ZHANG W D, et al. Research on protective technology of test device on missile during penetration and simulation[J]. Journal of Projectiles, Rockets, Missiles and Guidance,2006, 26(2):224-226. (in Chinese) [8] LIU H, CAO Z K, LUO H J, et al. Performance of closed-cell aluminum foams subjected to impact loading[J]. Materials Science & Engineering A, 2013, 570:27–31. [9] WANG L C, WANG Y L, YOU X H, et al. Foaming behavior and pore structure evolution of foamed aluminum under the extrusion constraint[J]. Advances in Materials Science and Engineering, 2020, 13: 3948378. [10] MICHAILIDIS N, STERGIOUDI F, TSOUKNIDAS A. Deformation and energy absorption properties of powder-metallurgy produced Al foams[J]. Materials Science and Engineering A, 2011, 528(4):7222-7227. [11] 徐蓬朝, 黄惠东, 揭涛, 等. 高超音速侵彻引信中的泡沫铝垫片[J]. 探测与控制学报, 2010, 32(6):63-67. XU P C, HUANG H D, JIE T, et al. The foamed aluminium gasket in hypersonic penetrating fuze[J]. Journal of Detection and Control, 2010, 32(6):63-67. (in Chinese) [12] 徐鹏, 范锦彪, 祖静. 泡沫铝叠片的压缩性能与高gn值冲击吸能研究[J]. 华北工学院学报, 2004, 25(3):223-226. XU P, FAN J B, ZU J. Compressing capability of foamed aluminum fold slices and its study on energy-absorption in high gn shock[J]. Journal of North China Institute of Technology, 2004, 25(3):223-226. (in Chinese) [13] ISLAM M A, BROWN A D, HAZELL P J, et al. Mechanical response and dynamic deformation mechanisms of closed-cell aluminium alloy foams under dynamic loading[J]. International Journal of Impact Engineering, 2018, 114:111-122. [14] ALSAKARNEH A, MOORE L, BARRETT J. Evaluation of the use of a rubber buffer layer to protect embedded SIP devices from high mechanical forces[C]∥Proceedings of 2011 IEEE 61st Electronic Components and Technology Conference. Lake Buena Vista, FL, US: IEEE, 2011:1883-1888. [15] 徐萧, 高世桥, 牛少华, 等. 灌封材料对侵彻过载下弹载器件的防护分析[J]. 兵工学报, 2017, 38(7):1289-1300. XU X, GAO S Q, NIU S H, et al. Dynamic analysis of projectile-borne electronic devices under impact loading[J]. Acta Armamentarii, 2017, 38(7):1289-1300. (in Chinese) [16] 闻利群, 鲁建霞, 张同来. 泡沫铝和橡胶对测试仪器抗冲击波缓冲能力的仿真研究[J]. 弹箭与制导学报, 2010, 30(3): 223-225, 232. WEN L Q, LU J X, ZHANG T L. The simulation comparison on the anti-shock capacity of foam aluminum and rubber for testing equipment[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2010, 30(3):223-225, 232. (in Chinese) [17] 景鹏. 高g值冲击测试关键技术研究[D]. 太原:中北大学, 2009: 49. JING P. Research on the key technologies of high-g impact test [D]. Taiyuan: North University of China, 2009: 49. (in Chinese)
|