Acta Armamentarii ›› 2020, Vol. 41 ›› Issue (10): 2131-2144.doi: 10.3969/j.issn.1000-1093.2020.10.023
• Comprehensive Review • Previous Articles
ZOU Yuan1, JIAO Feixiang1, CUI Xing2, ZHANG Xudong1, ZHANG Bin1
Online:
2020-11-25
CLC Number:
ZOU Yuan, JIAO Feixiang, CUI Xing, ZHANG Xudong, ZHANG Bin. A Review on Power Source Technology of Unmanned Ground Vehicles[J]. Acta Armamentarii, 2020, 41(10): 2131-2144.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.co-journal.com/EN/10.3969/j.issn.1000-1093.2020.10.023
[1] 刘川.美国陆军战车现代化战略(一)[J]. 坦克装甲车辆, 2017(7):34-39. LIU C. Combat vehicle modernization strategy(1)[J]. Tank & Armoured Vehicle, 2017(7):34-39. (in Chinese) [2] 邓启文, 刘书雷, 沈雪石. 无人装备发展新动向及影响研究[J]. 装备学院学报, 2016, 27(1): 76-79. DENG Q W, LIU S L, SHEN X S. New trends and influence of unmanned equipment[J]. Journal of Equipment Academy, 2016, 27(1): 76-79. (in Chinese) [3] 陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706. CHEN H Y, ZHANG Y. An overview of research on military unmanned ground vehicles[J]. Acta Armamentaril, 2014, 35(10): 1696-1706. (in Chinese) [4] 孟红, 朱森. 地面无人系统的发展及未来趋势[J]. 兵工学报, 2014,35(增刊1): 1-7. MENG H, ZHU S. The development and future trends of unmanned ground systems[J]. Acta Armamentaril, 2014,35(S1): 1-7. (in Chinese) [5] 王军良, 张国斌, 刘向平. 国外无人车和地面机器人发展计划[J]. 国外坦克, 2016(5):23-26. WANG J L, ZHANG G B, LIU X P. Foreign unmanned vehicles and ground robot development plans[J]. Foreign Tank, 2016(5): 23-26. (in Chinese) [6] VALOIS J S, HERMAN H. Remote operation of the Black Knight unmanned ground combat vehicle[J]. Proceedings of SPIE, 2008, 6962: 11-15. [7] ISAK U. Analysis of unmanned ground vehicles systems [D]. Stockholm, Sweden: Swedish National Defence College, 2015. [8] ARMY T. Uran-14 multi-mission unmanned ground vehicle [EB/OL]. [2017-09-03]. https:∥www.army- technology.com/projects/uran-14-multi-mission-unmanned-ground-vehicle/. [9] 杨云凯. 基于摇臂悬架的履带式地面无人平台设计与运动分析[D].长沙: 国防科学技术大学,2015. YANG Y K. Design and motion analysis of a tracked type unmanned ground platform based on rocker suspension system[D]. Changsha: National University of Defense Technology, 2015. (in Chinese) [10] 贺继林, 任常吉, 吴钪, 等. 八轮四摆臂无人机动平台越障性能分析与试验[J]. 农业机械学报, 2019, 50(1):367-373. HE J L, REN C J, WU K, et al. Investigation on obstacle-surmount performance for eight-wheel unmanned ground vehicle with four swing arms[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(1):367-373. (in Chinese) [11] ARMY T. iRobot 310 SUGV [EB/OL]. [2016-09-03]. https:∥www.army-technology.com/projects/irobot-310-sugv-us/. [12] Clearpath Robotics Inc. Warthog amphibious unmanned ground vehicle [EB/OL]. [2018-09-10]. https:∥clearpathrobotics.com/warthog-unmanned-ground-vehicle-robot/. [13] 李建秋,胡家毅.新能源汽车关键技术在国防领域的应用展望[J]. 军民两用技术与产品, 2019(3): 14-19. LI J Q, HU J Y. Prospects for the application of key technologies of new energy vehicles in the field of national defense[J]. Dual Use Technologies & Products, 2019(3): 14-19. (in Chinese) [14] 宋天助. 燃料电池动力系统特性及其控制研究[D]. 长春: 吉林大学, 2019. SUN T Z. Research on characteristics and control of fuel cell power system[D]. Changchun: Jilin University, 2019. (in Chinese) [15] 李建秋, 方川, 徐梁飞. 燃料电池汽车研究现状及发展[J]. 汽车安全与节能学报, 2014,5(1): 17-29. LI J Q, FANG C, XU L F. Current status and trends of the research and development for fuel cell vehicles[J]. Journal of Automotive Safety and Energy, 2014 ,5(1): 17-29. (in Chinese) [16] BALDIC J, OSENAR P, LAUDER N, et al. Fuel cell systems for long duration electric UAVs and UGVs[J]. Proceedings of SPIE: Defense Transformation and Net-Centric Systems 2010, 2010,7707: 770703. [17] GONZALEZ E L, CUESTA J S, FERNANDEZ F J V, et al. Experimental evaluation of a passive fuel cell/battery hybrid power system for an unmanned ground vehicle[J]. International Journal of Hydrogen Energy, 2019, 44(25): 12772-12782. [18] DU G D, ZOU Y, ZHANG X D. Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning[J]. Applied Energy, 2019, 251:113388. [19] LIU T, ZOU Y, LIU D X. Reinforcement learning of adaptive energy management with transition probability for a hybrid electric tracked vehicle[J]. IEEE Transactions on Industrial Electronics, 2015, 62(12): 7837-7846. [20] 邹渊, 胡晓松. 地面车辆混合驱动系统建模与控制优化[M]. 北京:北京理工大学出版社, 2015. ZOU Y, HU X S. Modeling and control optimization of ground vehicle hybrid drive system[M]. Beijing: Beijing Institute of Technology Press, 2015. (in Chinese) [21] 卢健林. 混合动力电机装配工艺的优化[J]. 装备制造技术, 2012(4): 143-144, 165. LU J L. Optimization of assembly process of hybrid motor[J]. Equipment Manufacturing Technology, 2012(4): 143-144,165. (in Chinese) [22] HAN X F, HE H W, WU J D, et al. Energy management based on reinforcement learning with double deep Q-learning for a hybrid electric tracked vehicle[J]. Applied Energy, 2019, 254:113708. [23] SHARAF A L H. Non-linear skid steering system for 4×4 UGV using fuzzy logic direct yaw moment control[J]. Journal of Engineering Science and Military Technologies, 2017, 1(1): 22-32. [24] DOGRU S, MARQUES L. A physics-based power model for skid-steered wheeled mobile robots[J]. IEEE Transactions on Robotics, 2018, 34(2): 421-433. [25] TARDEC. Autonomous platform demonstrator [EB/OL]. [2010-01-13]. https:∥www.nrec.ri.cmu.edu/nrec/solutions/ defense/other-projects/autonomous-platform-demonstrator.html. [26] SAFARIK J. TAROS V2 [EB/OL]. VOP CZ Sablona. [2015-11-13]. https:∥www.army-technology.com/projects/ taros-v2-unmanned-ground-vehicle-ugv/. [27] ARMY T. THeMIS hybrid unmanned ground vehicle, Estonia [EB/OL]. [2015-10-11]. http:∥www.army-technology. com/projects/themis-hybrid-unmanned-ground-vehicle/. [28] HLAND M W C. Weaponized multi-utility unmanned ground vehicles[J]. Small Arms Defense Journal, 2019, 10: V10N6. [29] 邹渊, 武金龙. 一种模块化履带式驱动平台: CN107351928A [P]. 2017-11-17. ZOU Y, WU J L. A modular crawler drive platform:CN107351928A[P]. 2017-11-17. (in Chinese) [30] 邹渊, 张旭东, 焦飞翔, 等. 一种模块化动力履带及分布式履带无人平台: CN109693525A[P]. 2019-04-30. ZOU Y, ZHANG X D, JIAO F X, et al. A modular power track and distributed track unmanned platform: CN109693525A[P]. 2019-04-30. (in Chinese) [31] 邹渊, 张旭东, 焦飞翔, 等. 一种模块化动力履带舱、动力履带及无人平台: CN109808785A[P]. 2019-05-28. ZOU Y, ZHANG X D, JIAO F X, et al. A modular power track compartment, power track and unmanned platform: CN109808785A[P]. 2019-05-28. (in Chinese) [32] 邹渊, 张旭东, 焦飞翔, 等. 一种多功能APU模块及混合动力无人平台: CN109751122A[P]. 2019-05-14. ZOU Y, ZHANG X D, JIAO F X, et al. A multifunctional APU module and hybrid unmanned platform:CN109751122A[P]. 2019-05-14. (in Chinese) [33] SHI C, JI C, GE Y, et al. Numerical study on ignition amelioration of a hydrogen-enriched Wankel engine under lean-burn condition[J]. Applied Energy, 2019, 255: 113800. [34] DAI D D, YUAN F, LONG R, et al. Performance analysis and multi-objective optimization of a stirling engine based on MOPSOCD[J]. International Journal of Thermal Sciences, 2018, 124: 399-406. [35] ISMAIL M S, MOGHAVVEMI M, MAHLIA T M I. Current utilization of microturbines as a part of a hybrid system in distributed generation technology[J].Renewable and Sustainable Energy Reviews, 2013, 21: 142-152. [36] HUNG N B, LIM O. A review of free-piston linear engines[J]. Applied Energy, 2016, 178: 78-97. [37] POPESCU M, GOSS J, STATON D A, et al. Electrical vehicles—practical solutions for power traction motor systems[J]. IEEE Transactions on Industry Applications, 2018, 54(3): 2751-2762. [38] HWANG S W, SIM J H, HONG J P, et al. Torque improvement of wound field synchronous motor for electric vehicle by PM-assist[J]. IEEE Transactions on Industry Applications, 2018, 54(4): 3252-3259. [39] QIN Y C, HE C C, SHAO X X, et al. Vibration mitigation for in-wheel switched reluctance motor driven electric vehicle with dynamic vibration absorbing structures[J]. Journal of Sound and Vibration, 2018, 419: 249-267. [40] 胡明寅. 增程式电动车动力系统设计及能效优化研究 [D]. 北京: 清华大学, 2011. HU M Y. Research on power system design and energy efficiency optimization of extended-range electric vehicles[D]. Beijing: Tsinghua University, 2011. (in Chinese) [41] 李长兵, 臧克茂, 李立宇. 装甲车辆起动发电一体化的设计[J]. 车辆与动力技术, 2014(3): 28-31. LI C B, ZANG K M, LI L Y. Design of integrated starter-generator in the armored vehicle[J]. Vehicle & Power Technology, 2014 (3): 28-31. (in Chinese) [42] 马晓军, 臧克茂, 张豫南, 等. 全电战斗车辆发展概况及关键技术[J]. 火力与指挥控制, 2008, 33(5): 1-4. MA X J, ZANG K M, ZHANG Y N, et al. Research on status quo and key technologies of all-electric combat vehicle[J]. Fire Control and Command Control, 2008, 33(5): 1-4. (in Chinese) [43] 张佩杰. 混合动力汽车ISG电机控制器与系统控制策略研究[D]. 长春: 吉林大学, 2007. ZHANG P J. On the ISG controller and system control strategy of hybrid electric vehicle[D]. Changchun: Jilin University, 2007. (in Chinese) [44] Mainstream Engineering Corporation. Diesel/JP-8 generator [EB/OL]. [2017-05-01]. https:∥www.mainstream-engr.com/wp-content /uploads/2017/05/Advantages_of_Integration.pdf. [45] BATTERY U. Types of lithium-ion [EB/OL]. [2017-09-01]. http:∥batteryuniversity.com/learn/article/types_of_lithium_ion. [46] HU X S, SUN F C, ZOU Y. Comparison between two model-based algorithms for Li-ion battery SOC estimation in electric vehicles[J]. Simulation Modelling Practice and Theory, 2013, 34: 1-11. [47] NG K S, MOO C S, CHEN Y P, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9): 1506-1511. [48] SUN F C, XIONG R, HE H W. A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique[J]. Applied Energy, 2016, 162: 1399-1409. [49] ZOU Y, HU X S, MA H M, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273: 793-803. [50] ZOU Y, LI S E, SHAO B, et al. State-space model with non-integer order derivatives for lithium-ion battery[J]. Applied Energy, 2016, 161: 330-336. [51] WEIGERT T, TIAN Q, LIAN K. State-of-charge prediction of batteries and battery-supercapacitor hybrids using artificial neural networks[J]. Journal of Power Sources, 2011, 196(8): 4061-4066. [52] SUN F C, HU X S, ZOU Y, et al. Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles[J]. Energy, 2011, 36(5): 3531-3540. [53] XU J, MI C C, CAO B, et al. A new method to estimate the state of charge of lithium-ion batteries based on the battery impedance model[J]. Journal of Power Sources, 2013, 233: 277-284. [54] FAN J, ZOU Y, ZHANG X D, et al. A novel state of health estimation method for lithium-ion battery in electric vehicles[J].Journal of Physics: Conference Series, 2019, 1187(2): 022014. [55] GAO W, ZOU Y, SUN F C, et al. Data pieces-based parameter identification for lithium-ion battery[J]. Journal of Power Sources, 2016, 328: 174-184. [56] 高玮. 基于数据片段的电动车锂电池参数辨识方法[D].北京:北京理工大学,2016. GAO W. Data segmentation method for electric vehicle lithium battery parameters[D]. Beijing: Beijing Institute of Technology, 2016. (in Chinese) [57] WEI J W, DONG G Z, CHEN Z H. Remaining useful life prediction and state of health diagnosis for lithium-ion batteries using particle filter and support vector regression[J]. IEEE Transactions on Industrial Electronics, 2017, 65(7): 5634-5643. [58] ZHANG C W, XU K J, LI L Y, et al. Study on a battery thermal management system based on a thermoelectric effect[J]. Energies, 2018, 11(2): 279. [59] HUO Y T, RAO Z H. Investigation of phase change material based battery thermal management at cold temperature using lattice boltzmann method[J]. Energy Conversion and Management, 2017, 133: 204-215. [60] ZHANG J B, GE H, LI Z, et al. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain[J]. Journal of Power Sources, 2015, 273: 1030-1037. [61] WANG C Y, ZHANG G S, GE S H, et al. Lithium-ion battery structure that self-heats at low temperatures[J]. Nature, 2016, 529(7587): 515. [62] 王文伟,孙逢春.全气候新能源汽车关键技术及展望[J].中国工程科学,2019,21(3):47-55. WANG W W, SUN F C. Key technologies and prospects of all-weather new energy vehicles [J]. Chinese Engineering Science, 2019, 21(3):47-55. (in Chinese) [63] PESARAN A, KIM G H. Battery thermal management system design modeling[R]. Golden, CO, US:National Renewable Energy Laboratory, 2006. [64] KARIMI G, LI X. Thermal management of lithium‐ion batteries for electric vehicles[J]. International Journal of Energy Research, 2013, 37(1): 13-24. [65] SABBAH R, KIZILEL R, SELMAN J R, et al. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution[J]. Journal of Power Sources, 2008, 182: 630-638. [66] VAN GILS R W, DANILOV D, NOTTEN P H L, et al. Battery thermal management by boiling heat-transfer[J]. Energy Conversion and Management, 2014, 79: 9-17. [67] 但昭学, 郑泰山. 第三代半导体器件在新能源汽车(EV/HEV)上的应用[J]. 机电工程技术, 2016, 45(2):41-45. DAN Z X, ZHENG T S. The application of the third generation semiconductor devices in the new energy vehicle(EV/HEV)[J]. Mechanical & Electrical Engineering Technology, 2016, 45(2): 41-45. (in Chinese) [68] 林佳, 黄浩生. 第三代半导体带来的机遇与挑战[J]. 集成电路应用, 2017(12):85-88. LIN J, HUANG H S. Opportunities and challenges by the third generation semiconductor[J]. Application of IC, 2017(12):85-88. (in Chinese) [69] 何亮, 刘扬. 第三代半导体GaN功率开关器件的发展现状及面临的挑战[J]. 电源学报, 2016,14(4):1-13. HE L, LIU Y. Recent progress and challenges of GaN based power electronic devices[J]. Journal of Power Supply, 2016,14(4): 1-13. (in Chinese) [70] TIE S F, TAN C W. A review of energy sources and energy management system in electric vehicles[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 82-102. [71] WU J L, ZOU Y, ZHANG X D, et al. An online correction predictive EMS for a hybrid electric tracked vehicle based on dynamic programming and reinforcement learning[J]. IEEE Access, 2019, 7: 98252-98266. [72] LIU T, DU G D, ZOU Y, et al. Fast learning-based control for energy management of hybrid electric vehicles[J]. IFAC-Papers-OnLine, 2018, 51(31): 595-600. [73] WEI S Y, ZOU Y, SUN F C, et al. A pseudospectral method for solving optimal control problem of a hybrid tracked vehicle[J]. Applied Energy, 2017, 194: 588-595. [74] ZOU Y, KONG Z H, LIU T, et al. A real-time Markov chain driver model for tracked vehicles and its validation: its adaptability via stochastic dynamic programming[J]. IEEE Transactions on Vehicular Technology, 2016, 66(5): 3571-3582. [75] ZOU Y, LIU T, LIU D X, et al. Reinforcement learning-based real-time energy management for a hybrid tracked vehicle[J]. Applied Energy, 2016, 171: 372-382. [76] HE D, ZOU Y, WU J L, et al. Deep Q-learning based energy management strategy for a series hybrid electric tracked vehicle and its adaptability validation[C]∥Proceedings of 2019 IEEE Transportation Electrification Conference and Expo (ITEC). Detroit, MI, US: IEEE, 2019: 1-6. [77] 孙逢春, 张承宁. 装甲车辆混合动力电传动技术[M]. 第2版. 北京: 国防工业出版社, 2016. SUN F C, ZHANG C N. Armored vehicle hybrid electric drive technology[M]. 2nd ed. Beijing: National Defense Industry Press, 2016. (in Chinese) [78] TAO X R, ZHOU K, IVANCO A, et al. A hybrid electric vehicle thermal management system-nonlinear controller design[C]∥Proceedings of SAE 2015 World Congress & Exhibition. Detroit,MI, US: SAE, 2015. [79] ZHANG T S, GAO C, GAO Q, et al. Status and development of electric vehicle integrated thermal management from BTM to HVAC[J]. Applied Thermal Engineering, 2015, 88: 398-409. |
[1] | SHENG Hui, XIANG Changle, GAI Jiangtao, YUAN Yi, JIAN Hongchao, ZHANG Nan. Vehicle Safety Control of Tracked Vehicle Driven by Two-sided Motor Coupling under the Failure Mode of One-sided Motor [J]. Acta Armamentarii, 2023, 44(11): 3498-3507. |
[2] | LI Xianyan, XU Wei, JIANG Lei, SUN Zeyuan, XIE Qiang, ZENG Yi, ZHENG Dongdong. Adaptive Prescribed Performance Control of Autonomous Vehicles with Input Saturation [J]. Acta Armamentarii, 2023, 44(11): 3310-3319. |
[3] | ZHANG Chaopeng, LIU Qingxiao, DONG Haotian, CHEN Huiyan, XI Junqiang. Coordinated Control of Electric-mechanical Braking System for Unmanned Tracked Vehicles [J]. Acta Armamentarii, 2022, 43(11): 2727-2737. |
[4] | CHAI Feng, YU Yanlei, PEI Yulong. State-of-the-art Technology and Prospects of Permanent Magnet In-wheel Motors for Electric Drive Vehicles [J]. Acta Armamentarii, 2021, 42(10): 2060-2074. |
[5] | GAI Jiangtao, LIU Chunsheng, MA Changjun, SHEN Hongji. Steering Control of Electric Drive Tracked Vehicle Considering Tracks' Skid and Slip [J]. Acta Armamentarii, 2021, 42(10): 2092-2101. |
[6] | WANG Zhen, XIANG Changle, LIU Hui, ZHANG Wei, XIE Yunkun. Dynamics Response and Influence Factors of Electromechanical Transmission System Based on Lumped-distributed ParameterModel [J]. Acta Armamentarii, 2021, 42(10): 2145-2158. |
[7] | CHEN Yongdan, TIAN Zhen, SHEN Hongji, LIU Lifang. Electromagnetic Optimization Design of Coaxial Magnetic Field Modulated Magnetic Gears [J]. Acta Armamentarii, 2021, 42(10): 2206-2214. |
[8] | ZOU Tiangang, YAN Qingdong, GAI Jiangtao, HOU Wei, WANG Zhitao, SHUAI Zhibin, SUN Xueyan. The Scheme of Lightweight Integrated Mixing Transmission Based on Flat Motor for Tracked Vehicle [J]. Acta Armamentarii, 2021, 42(10): 2233-2241. |
[9] | WANG Weiqi, WANG Weida, SUN Xiaoxia, ZHANG Yuanbo, LIU Cheng, XIANG Changle. The Joint Optimal Control Strategy of Multi-gear Parallel Hybrid Power System of Heavy-duty Vehicle [J]. Acta Armamentarii, 2021, 42(10): 2242-2250. |
[10] | LIU Yue, XI Junqiang, TIAN Zhen, ZHANG Xin. Modeling and Vibration Characteristics of Electromechanical Coupling Dynamics of Wheel Hub Driving System forWheeled Armored Vehicle [J]. Acta Armamentarii, 2021, 42(10): 2260-2267. |
[11] | PANG Daqian, ZENG Gen, LI Xunming, GUO Lei, ZHAO Fuqiang, SUN Zhanchun. Transient Temperature Field of Planetary Gear System in Electro-mechanical Transmission under Different Working Conditions [J]. Acta Armamentarii, 2021, 42(10): 2268-2277. |
[12] | LI Chunming, GAI Jiangtao, YUAN Yi, ZHOU Guangming. Synchronization Characteristics of Dual-motor Coupled Driving System of Tracked Vehicle [J]. Acta Armamentarii, 2020, 41(10): 1930-1938. |
[13] | GAO Qiang, LIAO Zili, YUAN Dong, LIU Chunguang. Effects of Key Parameters of Integrated Power System on Vehicle Stability [J]. Acta Armamentarii, 2020, 41(9): 1727-1735. |
[14] | GUO Hongming, XI Junqiang, CHEN Huiyan, ZHANG Zihao. Research on Wire-controlled Electro-mechanical Combined Braking Technology for Electric Drive Unmanned Tracked Vehicles [J]. Acta Armamentarii, 2019, 40(6): 1130-1136. |
[15] | ZHAO Qijin, LIAO Zili, ZHANG Yunyin, CAI Lichun. Research on Position Sensorless Control of Hub Motor in Full Speed Range [J]. Acta Armamentarii, 2019, 40(5): 915-926. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||