[1] 王博, 苏玉民, 万磊, 等. 基于梯度显著性的水面无人艇的海天线检测方法[J].光学学报, 2016, 36(5):58-67. WANG B, SU Y M, WAN L, et al. Sea sky line detection method of unmanned surface vehicle based on gradient saliency[J]. Acta Optica Sinica, 2016, 36(5):58-67. (in Chinese) [2] VASILIJEVIC A, ND D, MANDIC F, et al. Coordinated navigation of surface and underwater marine robotic vehicles for ocean sampling and environmental monitoring [J].IEEE/ASME Transactions on Mechatronics, 2017, 22(3):1174-1184. [3] MU D D, WANG G F, FAN Y S, et al. Adaptive course control based on trajectory linearization control for unmanned surface vehicle with unmodeled dynamics and input saturation [J]. Neurocomputing, 2019, 330:1-10. [4] 曾江峰,万磊,李岳明,等.基于切换视线法的欠驱动无人艇鲁棒自适应路径跟踪控制[J].兵工学报,2018,39(12):2427-2437. ZENG J F,WAN L,LI Y M,et al. Switching-line-of-sight-gui-dance-based robust adaptive path-following control for underactuated unmanned surface vehicles[J]. Acta Armamentarii,2018,39(12): 2427-2437.(in Chinese) [5] 陈霄, 刘忠, 罗亚松, 等. 海洋环境下欠驱动无人艇航迹跟踪控制算法[J].哈尔滨工业大学学报,2018, 50(10):110-117. CHEN X, LIU Z, LUO Y S, et al. Path tracking control algorithm for the underactuated USV in the marine environment [J]. Journal of Harbin Institute of Technology, 2018, 50(10):110-117. (in Chinese) [6] LIAO Y L, ZHANG M J, WAN L. Serret-frenet frame based on path following control for underactuated unmanned surface vehicles with dynamic uncertainties [J]. Journal of Central South University, 2015, 22: 214-223. [7] ZENG J F, WAN L, LI Y M, et al. Adaptive line-of-sight path following control for underactuated autonomous underwater vehicles in the presence of ocean currents [J]. International Journal of Advanced Robotic System, 2017, 14(6):1-14. [8] LIU T, DONG Z P, DU H W, et al. Path following control of the underactuated USV based on the improved line-of-sight guidance algorithm [J]. Polish Maritime Research, 2017, 24(1):3-11. [9] JOLLY K G, KUMAR R S, VIJAYAKUMAR R. A Bezier curve based path planning in a multi-agent robot soccer system without violating the acceleration limits [J]. Robotics & Autonomous Systems, 2009, 57(1):23-33.
[10] FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. Hudson County, NJ,US: John Wiley & Sons, 2011. [11] 苗建明, 王少萍, 范磊,等.欠驱动自主水下航行器空间曲线路径跟踪控制研究[J].兵工学报,2017,38(9):1786-1796. MIAO J M, WANG S P, FAN L, et al. Spatial curvilinear path following control of underactuated AUV[J]. Acta Armamentarii, 2017, 38(9):1786-1796. (in Chinese) [12] XIANG X B, YU C Y, LAPIERRE L, et al. Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles [J]. International Journal of Fuzzy Systems, 2018, 20(2):572-586. [13] BORHAUG E, PAVLOV A, PETTERSEN K Y. Integral LOS control for path following of underactuated marine surface vessels in the presence of constant ocean currents[C]∥Proceedings of IEEE Conference on Decision & Control. Cancun, Mexico: IEEE, 2008:4984-4991. [14] 刘杨, 郭晨, 沈智鹏, 等.欠驱动船舶路径跟踪的神经网络稳定自适应控制[J].控制理论与应用,2010, 27(2):169-174. LIU Y, GUO C, SHEN Z P, et al. Stable adaptive neural network control of path following for underactuated ships [J]. Control Theory & Applications, 2010, 27(2):169-174. (in Chinese) [15] MOE S, CAHARIJA W, PETTERSEN K Y, et al. Path following of underactuated marine surface vessels in the presence of unknown ocean currents[C]∥Proceedings of American Control Conference. Portland, OR, US: American Automatic Control Council, 2014:3856-3861. [16] LI J H, LEE P M, JUN B H, et al. Point-to-point navigation of underactuated ships [J]. Automatica, 2008, 44:3201-3205. [17] FOSSEN T I, PETTERSEN K Y, GALEAZZI R. Line-of-sight path following for Dubins paths with adaptive sideslip compensation of drift forces[J].IEEE Transactions on Control Systems Technology, 2015, 23(2):820-827. [18] POLYCARPOU M M. Stable adaptive neural control scheme for nonlinear systems[J]. IEEE Transactions on Automatic Control, 1996, 41(3):447-451. [19] MOLER C B. Numerical computing with MATLAB[M]. Philadelphia, PA, US: Society for Industrial and Applied Mathematics,2004. [20] CHEN B, LIU X P, LIU K F, et al. Direct adaptive fuzzy control of nonlinear strict-feedback systems [J]. Automatica, 2009, 45(6):1530-1535. [21] FREDRIKSEN E, PETTERSEN K Y. Global κ-exponential way-point maneuvering of ships: theory and experiments[J]. Automatica, 2006, 42(4):677-687. [22] FOSSEN T I. How to incorporate wine, waves and ocean currents in the marine craft equations of motion[C]∥Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft. Genova, Italy: IFAC, 2012:126-131.
第40卷 第12期2019 年12月兵工学报ACTA ARMAMENTARIIVol.40No.12Dec.2019
|