Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (5): 240815-.doi: 10.12382/bgxb.2024.0815
Previous Articles Next Articles
LIU Tiancheng1, CHANG Ruosong1, XIE Fang2, JIANG Zebin3, ZHANG Yijing2,4,*(), MAO Ming2,**(
)
Received:
2024-09-09
Online:
2025-05-07
Contact:
ZHANG Yijing, MAO Ming
CLC Number:
LIU Tiancheng, CHANG Ruosong, XIE Fang, JIANG Zebin, ZHANG Yijing, MAO Ming. Identification of Auditory and Visual Channel Workloads of Special Vehicle Operators Based on EEG Indicators[J]. Acta Armamentarii, 2025, 46(5): 240815-.
Add to citation manager EndNote|Ris|BibTeX
频段 | 脑区 | 统计分析 | ||
---|---|---|---|---|
统计量 | p | 效应量 | ||
额叶 | 2.46 | 0.030* | 0.963 | |
δ | 颞叶 | 2.22 | 0.046* | 0.871 |
枕叶 | 2.15 | 0.053 | 0.842 | |
顶叶 | 2.31 | 0.039* | 0.906 | |
额叶 | 5.92 | 0.001*** | 2.320 | |
θ | 颞叶 | 5.22 | 0.001*** | 2.050 |
枕叶 | 5.29 | 0.001*** | 2.080 | |
顶叶 | 5.64 | 0.001*** | 2.210 | |
额叶 | 2.58 | 0.016* | 1.010 | |
α | 颞叶 | 0.25 | 0.805 | 0.098 |
枕叶 | 1.27 | 0.218 | 0.496 | |
顶叶 | 2.10 | 0.046* | 0.824 | |
额叶 | 1.25 | 0.233 | 0.490 | |
β | 颞叶 | -1.62 | 0.129 | 0.635 |
枕叶 | 0.53 | 0.602 | 0.208 | |
顶叶 | 2.36 | 0.027* | 0.927 |
Table 1 PSD analyzed results
频段 | 脑区 | 统计分析 | ||
---|---|---|---|---|
统计量 | p | 效应量 | ||
额叶 | 2.46 | 0.030* | 0.963 | |
δ | 颞叶 | 2.22 | 0.046* | 0.871 |
枕叶 | 2.15 | 0.053 | 0.842 | |
顶叶 | 2.31 | 0.039* | 0.906 | |
额叶 | 5.92 | 0.001*** | 2.320 | |
θ | 颞叶 | 5.22 | 0.001*** | 2.050 |
枕叶 | 5.29 | 0.001*** | 2.080 | |
顶叶 | 5.64 | 0.001*** | 2.210 | |
额叶 | 2.58 | 0.016* | 1.010 | |
α | 颞叶 | 0.25 | 0.805 | 0.098 |
枕叶 | 1.27 | 0.218 | 0.496 | |
顶叶 | 2.10 | 0.046* | 0.824 | |
额叶 | 1.25 | 0.233 | 0.490 | |
β | 颞叶 | -1.62 | 0.129 | 0.635 |
枕叶 | 0.53 | 0.602 | 0.208 | |
顶叶 | 2.36 | 0.027* | 0.927 |
频段 | 指标 | 统计分析 | ||
---|---|---|---|---|
统计量 | p | 效应量 | ||
节点度数 | 2.00 | 0.054 | 0.823 | |
δ | 集聚系数 | 0.88 | 0.393 | 0.345 |
特征路径长度 | 2.10 | 0.054 | 0.823 | |
全局效率 | 0.88 | 0.391 | 0.345 | |
节点度数 | 4.84 | 0.001*** | 1.900 | |
θ | 集聚系数 | 6.36 | 0.001*** | 2.490 |
特征路径长度 | 4.84 | 0.001*** | 1.900 | |
全局效率 | 1.28 | 0.223 | 0.501 | |
节点度数 | 1.67 | 0.109 | 0.654 | |
α | 集聚系数 | 1.37 | 0.183 | 0.537 |
特征路径长度 | 1.67 | 0.109 | 0.654 | |
全局效率 | 0.11 | 0.914 | 0.043 | |
节点度数 | 2.35 | 0.027* | 0.923 | |
β | 集聚系数 | 2.70 | 0.012* | 1.060 |
特征路径长度 | 2.35 | 0.027* | 0.923 | |
全局效率 | 1.33 | 0.194 | 0.524 |
Table 2 Metrics analyzed results for different frequency bands
频段 | 指标 | 统计分析 | ||
---|---|---|---|---|
统计量 | p | 效应量 | ||
节点度数 | 2.00 | 0.054 | 0.823 | |
δ | 集聚系数 | 0.88 | 0.393 | 0.345 |
特征路径长度 | 2.10 | 0.054 | 0.823 | |
全局效率 | 0.88 | 0.391 | 0.345 | |
节点度数 | 4.84 | 0.001*** | 1.900 | |
θ | 集聚系数 | 6.36 | 0.001*** | 2.490 |
特征路径长度 | 4.84 | 0.001*** | 1.900 | |
全局效率 | 1.28 | 0.223 | 0.501 | |
节点度数 | 1.67 | 0.109 | 0.654 | |
α | 集聚系数 | 1.37 | 0.183 | 0.537 |
特征路径长度 | 1.67 | 0.109 | 0.654 | |
全局效率 | 0.11 | 0.914 | 0.043 | |
节点度数 | 2.35 | 0.027* | 0.923 | |
β | 集聚系数 | 2.70 | 0.012* | 1.060 |
特征路径长度 | 2.35 | 0.027* | 0.923 | |
全局效率 | 1.33 | 0.194 | 0.524 |
频段 | 特征 | 不同分类器的准确率/% | |||||
---|---|---|---|---|---|---|---|
SVM | DT | RF | KNN | GBDT | XGBoost | ||
脑网络 | 44.05 | 41.77 | 42.58 | 61.99 | 41.89 | 51.34 | |
δ | PSD | 77.36 | 76.16 | 76.92 | 74.89 | 73.67 | 77.67 |
双模态 | 78.70 | 41.82 | 72.82 | 66.55 | 69.75 | 74.2 | |
脑网络 | 82.89 | 82.15 | 78.18 | 78.66 | 80.11 | 82.74 | |
θ | PSD | 89.74 | 92.82 | 95.68 | 95.25 | 92.44 | 92.36 |
双模态 | 89.21 | 89.21 | 94.04 | 80.79 | 88.23 | 92.63 | |
脑网络 | 59.56 | 68.02 | 47.36 | 55.97 | 67.40 | 64.33 | |
α | PSD | 41.52 | 53.02 | 52.65 | 56.80 | 41.83 | 55.7 |
双模态 | 59.11 | 41.87 | 58.75 | 55.94 | 63.45 | 60.27 | |
脑网络 | 64.26 | 41.68 | 49.45 | 72.81 | 41.97 | 67.47 | |
β | PSD | 41.40 | 63.12 | 54.92 | 48.76 | 62.72 | 57.98 |
双模态 | 64.05 | 41.75 | 64.59 | 71.47 | 41.79 | 65.71 |
Table 3 Machine learning classification results
频段 | 特征 | 不同分类器的准确率/% | |||||
---|---|---|---|---|---|---|---|
SVM | DT | RF | KNN | GBDT | XGBoost | ||
脑网络 | 44.05 | 41.77 | 42.58 | 61.99 | 41.89 | 51.34 | |
δ | PSD | 77.36 | 76.16 | 76.92 | 74.89 | 73.67 | 77.67 |
双模态 | 78.70 | 41.82 | 72.82 | 66.55 | 69.75 | 74.2 | |
脑网络 | 82.89 | 82.15 | 78.18 | 78.66 | 80.11 | 82.74 | |
θ | PSD | 89.74 | 92.82 | 95.68 | 95.25 | 92.44 | 92.36 |
双模态 | 89.21 | 89.21 | 94.04 | 80.79 | 88.23 | 92.63 | |
脑网络 | 59.56 | 68.02 | 47.36 | 55.97 | 67.40 | 64.33 | |
α | PSD | 41.52 | 53.02 | 52.65 | 56.80 | 41.83 | 55.7 |
双模态 | 59.11 | 41.87 | 58.75 | 55.94 | 63.45 | 60.27 | |
脑网络 | 64.26 | 41.68 | 49.45 | 72.81 | 41.97 | 67.47 | |
β | PSD | 41.40 | 63.12 | 54.92 | 48.76 | 62.72 | 57.98 |
双模态 | 64.05 | 41.75 | 64.59 | 71.47 | 41.79 | 65.71 |
[1] |
傅斌贺, 刘维平, 聂俊峰, 等. 考虑认知行为差异的乘员信息作业绩效研究[J]. 兵工学报, 2019, 40(3): 659-665.
doi: 10.3969/j.issn.1000-1093.2019.03.026 |
|
|
[2] |
|
[3] |
|
[4] |
doi: 10.1016/j.ijpsycho.2020.09.007 pmid: 33045292 |
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
doi: 10.1038/s41598-023-29647-0 pmid: 36782004 |
[10] |
doi: 10.1109/TNSRE.2022.3156546 pmid: 35239485 |
[11] |
doi: 10.1109/TNSRE.2017.2701002 pmid: 28489539 |
[12] |
毛明, 刘勇, 胡建军. 坦克装甲车辆综合电子信息系统的总体设计研究[J]. 兵工学报, 2017, 38(6): 1192-1202.
doi: 10.3969/j.issn.1000-1093.2017.06.020 |
doi: 10.3969/j.issn.1000-1093.2017.06.020 |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
doi: 10.1016/j.dt.2013.12.008 |
[17] |
|
[18] |
孙晓东, 金晓萍, 解芳, 等. 多模态告警和认知负荷对装甲车辆乘员反应的影响[J]. 兵工学报, 2023, 44(4): 972-981.
|
doi: 10.12382/bgxb.2022.0018 |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
doi: 10.1016/j.conb.2004.03.012 pmid: 15082327 |
[27] |
|
[28] |
doi: 10.1080/00140139.2020.1759699 pmid: 32330080 |
[29] |
|
[30] |
doi: 10.3389/fnhum.2018.00418 pmid: 30483080 |
[31] |
doi: 10.1111/psyp.12283 pmid: 25039563 |
[32] |
doi: S1388-2457(19)31193-9 pmid: 31541983 |
[1] | ZHANG Jiaqi, SHI Zhangsong, XU Huihui. An Underwater Acoustic Target Recognition Algorithm Based on Brain Network Features [J]. Acta Armamentarii, 2025, 46(5): 240735-. |
[2] | LIU Jia, LIU Hai’ou, CHEN Huiyan, MAO Feihong. Road Types Identification Method of Unmanned Tracked Vehicles Based on Fusion Features [J]. Acta Armamentarii, 2023, 44(5): 1267-1276. |
[3] | LI Meng, WU Haijun, DONG Heng, REN Guang, ZHANG Peng, HUANG Fenglei. Machine Learning-based Models for Predicting the Penetration Depth of Concrete [J]. Acta Armamentarii, 2023, 44(12): 3771-3782. |
[4] | LI Chiyun, MIAO Jianming, SHEN Bingzhen. Operational Effectiveness Prediction of Weapon Equipment System Based on Improved Stacking Ensemble Learning Method [J]. Acta Armamentarii, 2023, 44(11): 3455-3464. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||