欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (5): 240635-.doi: 10.12382/bgxb.2024.0635

• • 上一篇    

退化趋势平滑约束下基于BLSTM-VAE的剩余寿命预测方法

王旋1, 石章松1, 佘博1,*(), 孙世岩1, 秦奋起2   

  1. 1 海军工程大学, 湖北 武汉 430033
    2 中国船舶重工集团公司第七一三研究所, 河南 郑州 450052
  • 收稿日期:2024-07-26 上线日期:2025-05-07
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(61640308)

Remaining Life Prediction Method Based on BLSTMN-VAE under Degradation Trend Smoothing Constraint

WANG Xuan1, SHI Zhangsong1, SHE Bo1,*(), SUN Shiyan1, QIN Fenqi2   

  1. 1 Naval University of Engineering,Wuhan 430033,Hubei, China
    2 713 Research Institute, China Ship Scientific Research Centre, Zhengzhou 450052, Henan, China
  • Received:2024-07-26 Online:2025-05-07

摘要:

剩余寿命(Remaining Useful Life,RUL)预测对于维护工业设备的可靠性和安全性至关重要,但现有的RUL预测方法在处理高维传感器数据以及捕捉时间退化模式方面仍然面临诸多挑战。为了解决上述问题,提出一种退化趋势平滑约束下基于双向长短时记忆网络-变分自编码器(Bidirectional Long Short Term-Memory-Variational Auto Encoder,BLSTM-VAE)的RUL预测方法。该方法首先进行数据预处理,包括数据降噪、滑动窗口分段和标签修正等步骤。然后设计基于BLSTM的VAE型特征提取器,以有效提取时间序列数据中的非线性关系和长距离依赖关系。最后提出一种基于流形学习的退化趋势平滑约束模块,通过局部不变性假设来增强模型的稳健性和泛化能力。通过航空发动机数据集数据集进行验证,结果表明所提出的RUL预测方法在数据集上的表现优于现有的多种RUL预测方法,具有更低的预测误差和更高的稳定性。

关键词: 剩余寿命预测, 双向长短时记忆网络, 变分自编码器, 平滑性约束, 流形学习

Abstract:

Remaining useful life (RUL) prediction is crucial for maintaining the reliability and safety of industrial equipment, but the existing RUL prediction methods still face many challenges in processing the high-dimensional sensor data and capturing the temporal degradation patterns. To address the above issues, this paper proposes a RUL prediction method based on bidirectional long short term memory network-variational auto encoder (BLSTMN-VAE) under the constraint of degradation trend smoothing. This method is used for data preprocessing, including data noise reduction, sliding window segmentation, and label correction. Then, a BLSTMN-based VAE type feature extractor is designed to effectively extract the nonlinear relationships and long-distance dependencies in time series data. Finally, a degradation trend smoothing constraint module based on manifold learning is proposed to enhance the robustness and generalization ability of the proposed model through the assumption of local invariance. The proposed RUL prediction method is verified using the aero-engine dataset. The results show that the proposed RUL prediction method outperforms various existing RUL prediction methods, and has lower prediction errors and higher stability.

Key words: remaining life prediction, bidirectional long short-term memory network, variational autoencoder, smoothness constraint, manifold learning

中图分类号: