[1] |
陈子涵. 基于多模态Transformer的机电作动器剩余寿命预测[J]. 兵工学报, 2023, 44(10): 2920-2931.
doi: 10.12382/bgxb.2022.0581
|
|
CHEN Z H. Prognosticating remaining useful life of electro-mechanical actuators using a multi-mode transformermodel[J]. Acta Armamentarii, 2023, 44(10): 2920-2931. (in Chinese)
|
[2] |
WANG B, LEI Y G, LI N P, et al. Multiscale convolutional attention network for predicting remaining useful life of machinery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8):7496-7504.
|
[3] |
CAO Y D, DING Y F, JIA M P, et al. A novel temporal convolutional network with residual self-attention mechanism for remaining useful life prediction of rolling bearings[J]. Reliability Engineering & System Safety, 2021, 215: 107813.
|
[4] |
许晓东, 唐圣金, 谢建, 等. 随机退化应力作用下设备剩余寿命预测方法[J]. 兵工学报, 2022, 43(3): 712-719.
doi: 10.12382/bgxb.2021.0018
|
|
XU X D, TANG S J, XIE J, et al. Remaining useful life prediction of equipment under random degradation stress[J]. Acta Armamentarii, 2022, 43(3):712-719. (in Chinese)
doi: 10.12382/bgxb.2021.0018
|
[5] |
刘小平, 张立杰, 沈凯凯, 等. 考虑测量误差的步进加速退化试验建模与剩余寿命估计[J]. 兵工学报, 2017, 38(8): 1586-1592.
doi: 10.3969/j.issn.1000-1093.2017.08.017
|
|
LIU X P, ZHANG L J, SHEN K K, et al. Step stress accelerated degradation test modeling and remaining useful life estimation in consideration of measuring error[J]. Acta Armamentarii, 2017, 38(8): 1586-1592. (in Chinese)
|
[6] |
JOUIN M, GOURIVEAU R, HISSEL D, et al. Degradations analysis and aging modeling for health assessment and prognostics of PEMFC[J]. Reliability Engineering & System Safety, 2016, 148:78-95.
|
[7] |
TIAN H X, REN D X, LI K, et al. An adaptive update model based on improved long short term memory for online prediction of vibration signal[J]. Journal of Intelligent Manufacturing, 2021, 32(1): 37-49.
|
[8] |
ZHAO R, WANG D Z, YAN R Q, et al. Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2): 1539-1548.
|
[9] |
梁伟阁, 闫啸家, 佘博, 等. 基于FA-LN-BiGRU的机械设备剩余寿命区间预测方法[J]. 振动.测试与诊断, 2023, 43(3): 513-519,620-621.
|
|
LIANG W G, YAN X J, SHE B, et al. Remaining useful life interval prediction of mechanical equipment based on FA-LN-BiGRU[J]. Journal of Vibration, Measurement & Diagnosis, 2023, 43(3):513-519,620-621. (in Chinese)
|
[10] |
朱挺, 陈兆祥, 周笛, 等. 基于Bayesian-LSTM神经网络的热轧轧辊剩余寿命预测及不确定性评估[J]. 机械工程学报, 2024, 60(11): 181-190.
|
|
ZHU T, CHEN Z X, ZHOU D, et al. Bayesian-LSTM neural network-based remaining useful life prediction and uncertainty estimation of rollers in a hot strip Mill[J]. Journal of Mechanical Engineering, 2024, 60(11): 181-190. (in Chinese)
|
[11] |
YU W N, KIM I Y, MECHEFSKE C. Analysis of different RNN autoencoder variants for time series classification and machine prognostics[J]. Mechanical Systems and Signal Processing, 2021, 149: 107322.
|
[12] |
|
|
ZHANG L Y H, YANG Y M, CHEN Y Z, et al. Remaining useful life life prediction of variable-operating turbofan engine based on VMD-CNN-BiLSTM[J]. Journal of Beijing University of Aeronautics and Astronautics. https://doi.org/10.13700/j.bh.1001-5965.2021.0051. (in Chinese)
|
[13] |
YU W N, KIM I Y, MECHEFSKE C. Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme[J]. Mechanical Systems and Signal Processing, 2019, 129: 764-780.
|
[14] |
CHENG Y W, WANG C, WU J, et al. Multi-dimensional recurrent neural network for remaining useful life prediction under variable operating conditions and multiple fault modes[J]. IEEE Sensors Journal, 2021, 21(9): 10905-10914.
|
[15] |
COSTA N, SANCHEZ L. Variational encoding approach for interpretable assessment of remaining useful life estimation[J]. Reliability Engineering & System Safety, 2022, 222: 108353.
|
[16] |
BEKTAS O. A neural network filtering approach for similarity-based remaining useful life estimation[J]. The International Journal of Advanced Manufacturing Technology, 2019,101: 87-103.
|
[17] |
XU X W, LI X, MING W W, et al. A novel multi-scale CNN and attention mechanism method with multi-sensor signal for remaining useful life prediction[J]. Computers & Industrial Engineering, 2022, 169:108-204.
|
[18] |
BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. Journal of Machine Learning Research, 2006(7): 2399-2434.
|
[19] |
ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326.
doi: 10.1126/science.290.5500.2323
pmid: 11125150
|
[20] |
SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]// Proceedings of 2008 International Conference on Prognostics and Health Management. Denver, CO, US: IEEE, 2008: 1-9.
|
[21] |
WANG Z J, ZHAO W Y, LI Y F, et al. Adaptive staged RUL prediction of rolling bearing[J]. Measurement, 2023, 222: 113478.
|
[22] |
ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// Proceedings of 2017 IEEE International Conference on Prognostics and Health Management. Dallas, TX, US: IEEE, 2017: 88-95.
|
[23] |
WANG T C. Remaining useful life predictions for turbofan engine degradation based on concurrent semi-supervised model[J]. Neural Computing and Applications, 2022,34: 5151-5160.
|
[24] |
LI H, ZHAO W, ZHANG Y X, et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113.
|
[25] |
CHENG Y W, HU K, WU J, et al. Autoencoder quasi-recurrent neural networks for remaining useful life prediction of engineering systems[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(2): 1081-1092.
|