[1] |
陈慧岩, 张玉. 军用地面无人机动平台技术发展综述[J]. 兵工学报, 2014, 35(10): 1696-1706.
doi: 10.3969/j.issn.1000-1093.2014.10.026
|
|
CHEN H Y, ZHANG Y. An overview of research on military unmanned ground vehicles[J]. Acta Armamentaril, 2014, 35(10): 1696-1706. (in Chinese)
|
[2] |
侯军占, 张卫国, 庞澜, 等. 地面小型无人侦察平台发展及关键技术探讨[J]. 应用光学, 2019, 40(6): 958-964.
doi: 10.5768/JAO201940.0601005
|
|
HOU J Z, ZHANG W G, PANG L, et al. Development and key technologies of small reconnaissance UGV[J]. Journal of Applied Optics, 2019, 40(6): 958-964. (in Chinese)
doi: 10.5768/JAO201940.0601005
|
[3] |
GUAN H J, WU S B, XU S H, et al. A planning framework of environment detection for unmanned ground vehicle in unknown off-road environment[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2021, 1(11):1-16.
|
[4] |
刘海鸥, 韩雨轩, 刘庆霄, 等. 不同探测距离传感器的搜索策略研究[J]. 北京理工大学学报, 2023, 43(2):151-160.
|
|
LIU H O, HAN Y X, LIU Q X, et al. Search strategy based on sensors with different detection distances[J]. Transactions of Beijing Institute of Technology, 2023, 43(2):151-160. (in Chinese)
|
[5] |
李立春, 李胜利, 程慧, 等. 地面突击装备武器系统发展趋势与关键技术分析[J]. 火力与指挥控制, 2019, 44(12): 184-189.
|
|
LI L C, LI S L, CHENG H, et al. Analysis of weapon system development trend and key technology in ground assault equipment[J]. Fire Control & Command Control, 2019, 44(12):184-189. (in Chinese)
|
[6] |
王明, 武富春, 范文超, 等. 人工智能在装甲火力与指挥控制领域的应用[J]. 火力与指挥控制, 2020, 45(9): 1-5.
|
|
WANG M, WU F C, FAN W C, et al. Application of artificial intelligence in armored vehicle fire control and command control[J]. Fire Control & Command Control, 2020, 45(9):1-5. (in Chinese)
|
[7] |
童仲志, 张媛, 邢宗义, 等. 某装备扫雷犁系统的遗传神经网络建模研究[J]. 兵工学报, 2010, 31(5):650-656.
|
|
TONG Z Z, ZHANG Y, XING Z Y, et al. Neural network modeling based on genetic algorithm for mine sweeping plough of a certain weapon[J]. Acta Armamentarii, 2010, 31(5): 650-656. (in Chinese)
|
[8] |
CAREY M W, KURZ E M, MATTE J D, et al. Novel EOD robot design with dexterous gripper and intuitive teleoperation[C]// Proceedings of World Automation Congress 2012. Washington,D.C.,US: IEEE, 2012: 1-6.
|
[9] |
孟红, 朱森. 地面无人系统的发展及未来趋势[J]. 兵工学报, 2014, 35(增刊1): 1-7.
|
|
MENG H, ZHU S. The development and future trends of unmanned ground systems[J]. Acta Armamentaril, 2014, 35(S1): 1-7. (in Chinese)
|
[10] |
邹渊, 焦飞翔, 崔星, 等. 地面无人平台动力源集成技术发展综述[J]. 兵工学报, 2020, 41(10): 2131-2144.
|
|
ZOU Y, JIAO F X, CUI X, et al. A Review on power source technology of unmanned ground vehicles[J]. Acta Armamentaril, 2020, 41(10): 2131-2144. (in Chinese)
|
[11] |
BUEHLER M, IAGNEMMA K, SINGH S. The 2005 DARPA grandchallenge[J]. Springer Tracts in Advanced Robotics, 2007, 36(5):1-43.
|
[12] |
BUEHLER M, IAGNEMMA K, SINGH S. The DARPA urban challenge:autonomous vehicles in city traffic[M]. Berlin,Germany:Springer, 2009.
|
[13] |
ACKERMAN E. Robots conquer the underground: what darpa’s subterranean challenge means for the future of autonomous robots[J]. IEEE Spectrum, 2022, 59(5):30-37.
|
[14] |
HARPER J O N. Robotic combat vehiciles[J]. National Defense, 2020, 104(797): 26-31.
|
[15] |
TEXTRON S. RIPSAW M5[EB/OL].[2022-08-23]. https://www.textronsystems.com/products/ripsaw-m5/.
|
[16] |
ARMY T. Marker anti-tank robotic unmanned ground vehicle, russia[EB/OL].[2023-02-14]. https://www.army-technology.com/projects/marker-anti-tank-ugv-russia/.
|
[17] |
ARMY T. Uran-9 Unmanned ground combat vehicle[EB/OL].[2016-11-20]. https://www.army-technology.com/projects/uran-9-unmanned-ground-combat-vehicle/.
|
[18] |
WEGMANN K M. RCH 155-one of the world’ most advanced barrelled artillery systems[EB/OL].(2022-12-23). https://www.kmweg.com/systems-products/wheeled-vehicles/artillery/rch-155/.
|
[19] |
ARMY T. Shadow rider unmanned ground vehicle, turkey[EB/OL].[2021-09-22]. https://www.army-technology.com/projects/shadow-rider-unmanned-ground-vehicle-turkey/.
|
[20] |
MINISTRY OF DEFENCE. Demining system bozena 5[EB/OL].[2010-03-30]. https://www.army.cz/scripts/detail.php?id=15496.
|
[21] |
中国北方车辆研究所. 研究所多款新型产品亮相第十四届中国航展[EB/OL].[2022-12-06]. http://noveri.norincogroup.com.cn/art/2022/12/6/art_3717_406485.html.
|
|
China North Vehicle Research Institute. A number of new products of the institute appeared at the 14th China International Aviation and Aerospace Exhibition[EB/OL]. [2022-12-06]. http://noveri.norincogroup.com.cn/art/2022/12/6/art_3717_406485.html.
|
[22] |
胡媛媛, 武云鹏, 丁玲, 等. 地面无人装备环境感知能力评价方法研究[J]. 火力与指挥控制, 2022, 47(2):88-92.
|
|
HU Y Y, WU Y P, DING L, et al. Assessment method of environmental perception ability in unmanned-ground equipment[J]. Fire Control & Command Control, 2022, 47(2):88-92. (in Chinese)
|
[23] |
ZHOU L P, WANG J K, LIN S Q, et al. Terrain traversability mapping based on LiDAR and camera fusion[C]// Proceedings of the 2022 8th International Conference on Automation, Robotics and Applications.Washington,D.C.,US:IEEE, 2022: 217-222.
|
[24] |
GAO B, HU S C, ZHAO X J, et al. Fine-grained off-road semantic segmentation and mapping via contrastive learning[C]// Proceedings of the International Conference on Intelligent Robots and Systems. Prague, Czech: IEEE, 2021: 5950-5957.
|
[25] |
POKONIECZNY K, BORKOWSKA S. Using high resolution spatial data to develop military maps of passability[C]// Proceedings of 2019 International Conference on Military Technologies.Washington,D.C.,US:IEEE, 2019: 1-8.
|
[26] |
SHIN J, KWAK D J, KIM J. Autonomous platooning of multiple ground vehicles in rough terrain[J]. Journal of Field Robotics, 2021, 38(2): 229-241.
doi: 10.1002/rob.v38.2
URL
|
[27] |
GABRLIK P, LAZNA T, JILEK T, et al. An automated heterogeneous robotic system for radiation surveys:design and field testing[J]. Journal of Field Robotics, 2021, 38(5): 657-683.
doi: 10.1002/rob.v38.5
URL
|
[28] |
FANKHAUSER P, BLOESCH M, HUTTER M. Probabilistic terrain mapping for mobile robots with uncertain localization[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3019-3026.
doi: 10.1109/LSP.2016.
URL
|
[29] |
FANKHAUSER P, BJELONIC M, BELLICOSO C D, et al. Robust rough-terrain locomotion with a quadrupedal robot[C]// Proceedings of 2018 IEEE International Conference on Robotics and Automation.Washington,D.C.,US:IEEE, 2018: 5761-5768.
|
[30] |
GUIZILINI V, RAMOS F. Variational Hilbert regression for terrain modeling and trajectory optimization[J]. The International Journal of Robotics Research, 2019, 38(12/13): 1375-1387.
doi: 10.1177/0278364919844586
URL
|
[31] |
DANG T, TRANZATTO M, KHATTAK S, et al. Graph-based subterranean exploration path planning using aerial and legged robots[J]. Journal of Field Robotics, 2020, 37(8): 1363-1388.
doi: 10.1002/rob.v37.8
URL
|
[32] |
ZHOU B, YI J J, ZHANG X K, et al. An autonomous navigation approach for unmanned vehicle in outdoor unstructured terrain with dynamic and negative obstacles[J]. Robotica, 2022, 40(8): 2831-2854.
doi: 10.1017/S0263574721001983
URL
|
[33] |
PHILIPP KRÜSI, FURGALE P, BOSSE M, et al. Driving on point clouds:motion planning, trajectory optimization, and terrain assessment in generic nonplanar environments[J]. Journal of Field Robotics, 2017, 34(5):940-984.
doi: 10.1002/rob.2017.34.issue-5
URL
|
[34] |
ZHANG K, YANG Y, FU M Y, et al. Traversability assessment and trajectory planning of unmanned ground vehicles with suspension systems on rough terrain[J]. Sensors, 2019, 19(20): 4372.
doi: 10.3390/s19204372
URL
|
[35] |
LIU Z X, YUAN X F, HUANG G M, et al. 3D Gradient reconstruction-based path planning method for autonomous vehicle with enhanced roll stability[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11):20563-205571.
doi: 10.1109/TITS.2022.3177608
URL
|
[36] |
LIU Y, ZONG C F, HAN X J, et al. Spacing allocation method for vehicular platoon: a cooperative game theory approach[J]. Applied Sciences, 2020, 10(16): 5589.
doi: 10.3390/app10165589
URL
|
[37] |
BAI Q S, SHEHATA M, NADA A. Review study of using Euler angles and Euler parameters in multibody modeling of spatial holonomic and non-holonomic systems[J]. International Journal of Dynamics and Control, 2022, 10(5): 1707-1725.
doi: 10.1007/s40435-022-00913-9
|
[38] |
JI A, LEVINSON D. A review of game theory models of lane changing[J]. Transportmetrica A:Transport Science, 2020, 16(3):1628-1647.
doi: 10.1080/23249935.2020.1770368
URL
|
[39] |
ZHOU Y Y, TAKEDA Y, TOMIZUKA M, et al. Automatic construction of lane-level HD maps for urban scenes[C]// Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.Prague,Czech:IEEE, 2021:6649-6656.
|
[40] |
STANNARTZ N, THEERS M, LLARENA A, et al. Comparison of curve representations for memory-efficient and high-precision map generation[C]// Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems. Rhodes,Greece:IEEE, 2020:1-6.
|
[41] |
POGGENHANS F, PAULS J H, JANOSOVITS J, et al. Lanelet2: A high-definition map framework for the future of automated driving[C]// Proceedings of 2018 IEEE International Conference on Intelligent Transportation System.Washington,D.C.,US:IEEE, 2018.
|
[42] |
WU M Z, JIN H, TANG B, et al. Constructing topological road network of wild environment using Google Earth Pro[C]// Proceedings of 2019 IEEE Intelligent Transportation Systems Conference.Washington,D.C.,US:IEEE, 2019.
|
[43] |
BASTANI F, HE S T, ABBAR S, et al. RoadTracer: automatic extraction of road networks from aerial images[C]// Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington,D.C.,US:IEEE, 2018.
|
[44] |
DARPA. Grand challenge 2005 team technical papers[R]. Washington,D.C.,US: DARPA Grand Challenge, 2005.
|
[45] |
SHANG E K, AN X J, WU T, et al. LiDAR based negative obstacle detection for field autonomous land vehicles[J]. Journal of Field Robotics, 2016, 33(5): 591-617.
doi: 10.1002/rob.2016.33.issue-5
URL
|
[46] |
ZHOU C Y, DI H J, XU S H, et al. Obstacle detection based on logistic regression in unstructured environment[C]// Proceedings of 2019 IEEE International Conference on Unmanned Systems.Washington,D.C.,US:IEEE, 2019: 379-384.
|
[47] |
ZIEGLER J, STILLER C. Fast collision checking for intelligent vehicle motion planning[C]// Proceedings of Intelligent Vehicles Symposium. Washington,D.C.,US:IEEE, 2010.
|
[48] |
HEDRICK G, OHI N, YU G. Terrain-aware path planning and map update for mars sample return mission[J]. IEEE Robotics and Automation Letters, 2020, 5(4):5181-5188.
doi: 10.1109/LSP.2016.
URL
|
[49] |
GASPARINO M V, SIVAKUMAR A N, LIU Y X, et al. Wayfast:navigation with predictive traversability in the field[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 10651-10658.
doi: 10.1109/LRA.2022.3193464
URL
|
[50] |
SETTERFIELD T P, ELLERY A. Terrain response estimation using an instrumented rocker-bogie mobility system[J]. IEEE Transactions on Robotics, 2013, 29(1):172-188.
doi: 10.1109/TRO.2012.2223591
URL
|
[51] |
PlONSKI P A, TOKEKAR P, ISLER V. Energy-efficient path planning for solar-powered mobile robots*[J]. Journal of Field Robotics, 2013, 30(4):583-601.
doi: 10.1002/rob.2013.30.issue-4
URL
|
[52] |
WEI M H, ISLER V. Predicting energy consumption of ground robots on uneven terrains[J]. Robotics and Automation Letters, 2022, 7(1): 594-601.
|
[53] |
田洪清, 王建强, 黄荷叶, 等. 越野环境下基于势能场模型的智能车概率图路径规划方法[J]. 兵工学报, 2021, 42(7): 1496-1505.
|
|
TIAN H Q, WANG J Q, HUANG H Y, et al. Probabilistic roadmap method for path planning of intelligent vehicle based on artificial potential field model in off-road environment[J]. Acta Armamentaril, 2021, 42(7): 1496-1505. (in Chinese)
|
[54] |
PARK J, KARUMANCHI S, IAGNEMMA K. Homotopy-based divide-and-conquer strategy for optimal trajectory planning via mixed-integer programming[J]. IEEE Transactions on Robotics, 2017, 31(5): 1101-1115.
doi: 10.1109/TRO.8860
URL
|
[55] |
LIU C, LIN C Y, TOMIZUKA M. The convex feasible set algorithm for real time optimization in motion planning[J]. SIAM Journal on Control and Optimization, 2018, 56(4): 2712-2733.
doi: 10.1137/16M1091460
URL
|
[56] |
LI B, ACARMAN T, ZHANG Y M, et al. Optimization-based trajectory planning for autonomous parking with irregularly placed obstacles: a lightweight iterative framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(8): 11970-11981.
doi: 10.1109/TITS.2021.3109011
URL
|
[57] |
HAN Z C, WU Y W, LI T, et al. Differential flatness-based trajectory planning for autonomous vehicles:arXiv:2208.13160[R]. Ithaca,NY,US:Cornell University, 2022:2208.13160.
|
[58] |
周梦如, 陈慧岩, 熊光明, 等. 越野环境下无人履带平台的道路可通行性分析[J]. 兵工学报, 2022, 43(10): 2485-2496.
doi: 10.12382/bgxb.2021.0824
|
|
ZHOU M Y, CHEN H Y, XIONG G M, et al. Road traversability analysis of unmanned tracked platform in off-road environment[J]. Acta Armamentarii, 2022, 43(10):2485-2496. (in Chinese)
doi: 10.12382/bgxb.2021.0824
|
[59] |
LIU X, LI D C, HE Y Q, et al. Efficient and multifidelity terrain modeling for 3D large-scale and unstructured environments[J]. Journal of Field Robotics, 2022, 39(8): 1286-1322.
doi: 10.1002/rob.v39.8
URL
|
[60] |
STÖLZLE M, MIKI T, GERDES L, et al. Reconstructing occluded elevation information in terrain maps with self-supervised learning[J]. IEEE Robotics and Automation Letters, 2022, 7(2):1697-1704.
doi: 10.1109/LRA.2022.3141662
URL
|
[61] |
DROESCHEL D, SCHWARZ M, BEHNKE S. Continuous mapping and localization for autonomous navigation in rough terrain using a 3D laser scanner[J]. Robotics and Autonomous Systems, 2017, 88: 104-115.
doi: 10.1016/j.robot.2016.10.017
URL
|
[62] |
HORNUNG A, WURM K M, BENNEWITZ M, et al. OctoMap: an efficient probabilistic 3D mapping framework based on octrees[J]. Autonomous Robots, 2013, 34: 189-206.
doi: 10.1007/s10514-012-9321-0
URL
|
[63] |
YU J, FANG H Q, PU G L, et al. GeoSOT-OctoMap: an octree grid map model for autonomous driving[C]// Proceedings of 2021 IEEE International Conference on Unmanned Systems. Beijing, China: IEEE, 202: 5-10.
|
[64] |
RUETZ F, HERNÁNDEZ E, PFEIFFER M, et al. Ovpc mesh: 3d free-space representation for local ground vehicle navigation[C]// Proceedings of 2019 International Conference on Robotics and Automation.Washington,D.C.,US:IEEE, 2019: 8648-8654.
|
[65] |
BUCHANAN R, WELLHAUSEN L, BJELONIC M, et al. Perceptive whole-body planning for multilegged robots in confined spaces[J]. Journal of Field Robotics, 2021, 38(1):68-84.
doi: 10.1002/rob.v38.1
URL
|
[66] |
徐鹏, 丁亮, 高海波, 等. 考虑足地作用的足式机器人环境表征与路径规划[J]. 机械工程学报, 2020, 56(23): 21-33.
doi: 10.3901/JME.2020.23.021
|
|
XU P, DING L, GAO H B, et al. Environmental characterization and path planning for legged robots considering foot-terrain interaction[J]. Journal of Mechanical Engineering, 2020, 56(23): 21-33. (in Chinese)
doi: 10.3901/JME.2020.23.021
|
[67] |
BOUMAN A, GINTING M F, ALATUR N, et al. Autonomous spot: long-range autonomous exploration of extreme environments with legged locomotion[C]// Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C.,US:IEEE, 2020: 2518-2525.
|
[68] |
POLEVOY A, KNUTH C, POPEK K M, et al. Complex terrain navigation via model error prediction[C]// Proceedings of 2022 International Conference on Robotics and Automation. Washington,D.C.,US:EEE, 2022: 9411-9417.
|
[69] |
HU J J, BAO C Y, OZAY M, et al. Deep depth completion from extremely sparse data: a survey:arXiv:2205.05335[R]. Ithaca,NY,US:Cornell University, 2022:2205.05335.
|
[70] |
GAO B, PAN Y C, LI C K, et al. Are we hungry for 3D LiDAR data for semantic segmentation? a survey of datasets and methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6063-6081.
doi: 10.1109/TITS.2021.3076844
URL
|
[71] |
HU J M, HU Y H, LU C, et al. Integrated path planning for unmanned differential steering vehicles in off-road environment with 3D terrains and obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(6):5562-5572.
doi: 10.1109/TITS.2021.3054921
URL
|
[72] |
THORESEN M, NIELSEN N H, MATHIASSEN K, et al. Path planning for UGVs based on traversability hybrid A*[J]. IEEE Robotics and Automation Letters, 2021, 99:1-1.
|
[73] |
陈慧岩, 关海杰, 刘海鸥, 等. 履带平台无人驾驶系统基于语义信息的模块串联方法[J]. 兵工学报, 2022, 43(11): 2705-2716.
doi: 10.12382/bgxb.2021.0832
|
|
CHEN H Y, GUAN H J, LIU H O, et al. A semantic information-based module series method for unmanned tracked driving systems[J]. Acta Armamentarii, 2022, 43(11): 2705-2716. (in Chinese)
doi: 10.12382/bgxb.2021.0832
|
[74] |
JI Y, TANAKA Y, TAMURA Y, et al. Adaptive motion planning based on vehicle characteristics and regulations for off-road UGVs[J]. IEEE Transactions on Industrial Informatics, 2018, 99:1-1.
|
[75] |
MENG X R, CAO Z Q, LIANG S, et al. A terrain description method for traversability analysis based on elevation grid map[J]. International Journal of Advanced Robotic Systems, 2018, 15(1): 1729881417751530.
|
[76] |
AHTIAINEN J, STOYANOV T, SAARINEN J. Normal distributions transform traversability maps: LIDAR-only approach for traversability mapping in outdoor environments[J]. Journal of Field Robotics, 2017, 34(3): 600-621.
doi: 10.1002/rob.2017.34.issue-3
URL
|
[77] |
TAKEMURA R, ISHIGAMI G. Traversability-based trajectory planning with quasi-dynamic vehicle model in loose soil[C]// Proceedings of 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems.Washington,D.C.,US:IEEE, 2021: 8411-8417.
|
[78] |
GUAN T R, HE Z P, SONG R T, et al. TNS:terrain traversability mapping and navigation system for autonomous excavators:arXiv:2109.06250[R]. Ithaca,NY,US:Cornell University, 2021:2109.06250.
|
[79] |
HADDELER G, CHAN J L, YOU Y W, et al. Explore bravely:wheeled-legged robots traverse in unknown rough environment[C]// Proceedings of 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems.Las Vegas, NV, US:IEEE, 2020:7521-7526.
|
[80] |
WAIBEL G G, LÖW T, NASS M, et al. How rough is the path? terrain traversability estimation for local and global path planning[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9):16462-16473.
doi: 10.1109/TITS.2022.3150328
URL
|
[81] |
WEERAKOON K, SATHYAMOORTHY A J, PATEL U, et al. Terp: reliable planning in uneven outdoor environments using deep reinforcement learning[C]// Proceedings of 2022 International Conference on Robotics and Automation.Washington,D.C.,US:IEEE, 2022: 9447-9453.
|
[82] |
MARTINEZ J L, MORAN M, MORALES J, et al. Supervised learning of natural-terrain traversability with synthetic 3D laser scans[J]. Applied Sciences, 2020, 10(3): 1140.
doi: 10.3390/app10031140
URL
|
[83] |
WELLHAUSEN L, DOSOVITSKIY A, RANFTL R, et al. Where should I walk? predicting terrain properties from images via self-supervised learning[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 1509-1516.
doi: 10.1109/LSP.2016.
URL
|
[84] |
孙志群, 李强, 袁卫, 等. 路面激励对火箭炮行进间发射控制的影响研究[J]. 兵器装备工程学报, 2021, 42(4): 37-41.
|
|
SUN Z Q, LI Q, YUAN W, et al. Study on effect of road excitation on rocket launch control between travels[J]. Journal of Ordnance Equipment Engineering, 2021, 42(4): 37-41. (in Chinese)
|
[85] |
马宪永, 全蔚闻, 董泽蛟, 等. 随机不平度激励下车辆-沥青路面动力学响应分析[J]. 机械工程学报, 2021, 57(12): 40-50.
doi: 10.3901/JME.2021.12.040
|
|
MA X Y, QUAN W W, DONG Z J, et al. Research on dynamic response of vehicle and asphalt pavement interaction under random unevenness excitation[J]. Journal of Mechanical Engineering, 2021, 57(12): 40-50. (in Chinese)
doi: 10.3901/JME.2021.12.040
|
[86] |
单春来, 赵凯, 孟超, 等. 不同行驶系统对战车稳定性的影响研究[J]. 火炮发射与控制学报, 2021, 42(3): 16-22.
|
|
SHAN C L, ZHAO K, MENG C, et al. Study of the effect of different driving systems on the stability of combat vehicles[J]. Journal of Gun Launch & Control, 2021, 42(3): 16-22. (in Chinese)
|
[87] |
张宝振, 王汉平, 张哲, 等. 二维路面不平度的分形构造方法[J]. 兵工学报, 2020, 41(12): 2389-2396.
doi: 10.3969/j.issn.1000-1093.2020.12.003
|
|
ZHANG B Z, WANG H P, ZHANG Z, et al. Fractal construction method of 2D road roughness[J]. Acta Armamentarii, 2020, 41(12): 2389-2396. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.12.003
|
[88] |
谢润. 车载武器行进间发射动力学研究[D]. 南京: 南京理工大学, 2015.
|
|
XIE R. Study on launch dynamics for vehicle-mounted weapon on traveling[D]. Nanjing: Nanjing University of Science and Technology, 2015. (in Chinese)
|
[89] |
麻小明, 刘馨心, 徐宏斌, 等. 履带式车载武器行进间发射动力学研究[J]. 弹箭与制导学报, 2019, 39(4):135-138,142.
|
|
MA X M, LIU X X, XU H B, et al. Study on launch dynamics for tracked vehicle-mounted weapon on traveling[J]. Journal of Projectiles, Rocket, Missiles and Guidance, 2019, 39(4): 135-138,142. (in Chinese)
|
[90] |
王红岩, 郝丙飞, 于魁龙, 等. 坦克底盘-火炮系统动力学建模及火炮振动特性分析[J]. 兵器装备工程学报, 2017, 38(12):6-12.
|
|
WANG H Y, HAO B F, YU K L, et al. Dynamics modeling for tank chassis-gun system and analysis for gun vibration[J]. Journal of Ordnance Equipment Engineering, 2017, 38(12):6-12. (in Chinese)
|
[91] |
陈宇, 杨国来, 付羽翀, 等. 高速机动条件下坦克行进间火炮非线性振动动力学研究[J]. 兵工学报, 2019, 40(7):1339-1348.
doi: 10.3969/j.issn.1000-1093.2019.07.002
|
|
CHEN Y, YANG G L, FU Y C, et al. Dynamic simulation on nonlinear vibration of marching tank gun under high mobility conditions[J]. Acta Armamentarii, 2019, 40(7):1339-1348. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2019.07.002
|
[92] |
CHEN Y, YANG G L. Dynamic simulation of tank stabilizer based on adaptive control[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2019, 233(9):3038-3049.
doi: 10.1177/0954406218802315
|
[93] |
CHEN Y, YANG G L, SUN Q Z. Dynamic simulation on vibration control of marching tank gun based on adaptive robust control[J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020, 39(2): 416-434.
doi: 10.1177/1461348419846685
URL
|
[94] |
李伟, 韩崇伟, 刘爱峰, 等. 干扰速率补偿式火炮线自稳定跟踪控制建模与仿[J]. 兵工学报, 2022, 43(6):1233-1245.
doi: 10.12382/bgxb.2021.0295
|
|
LI W, HAN C W, LIU A F, et al. Modeling and simulation of self-stable gun line control using interference rate compesation[J]. Acta Armamentarii, 2022, 43(6): 1233-1245. (in Chinese)
doi: 10.12382/bgxb.2021.0295
|
[95] |
张鑫, 张辉, 王宝宝, 等. 某自行高炮刚柔耦合动力学建模方法研究[J]. 火炮发射与控制学报, 2022, 43(5): 15-23.
|
|
ZHANG X, ZHANG H, WANG B B, et al. Research on a rigid-flexible coupling dynamics modeling method of a self-propelled anti-aircraft gun[J]. Journal of Gun Launch & Control, 2022, 43(5): 15-23. (in Chinese)
|
[96] |
孙国轩, 宫新宇, 时岩, 等. 基于差分进化算法的自行高炮随动系统PID参数整定[J]. 兵工学报, 2021, 42(5): 903-912.
doi: 10.3969/j.issn.1000-1093.2021.05.002
|
|
SUN G X, GONG X Y, SHI Y, et al. PID parameter tuning of self-propelled antiaircraft gun servo system based on differential evolution algorithm[J]. Acta Armamentarii, 2021, 42(5): 903-912. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.05.002
|
[97] |
魏连震, 龚建伟, 陈慧岩, 等. 基于强化学习补偿的地面无人战车行进间跟瞄自适应控制[J]. 兵工学报, 2022, 43(8): 1947-1955.
doi: 10.12382/bgxb.2021.0786
|
|
WEI L Z, GONG J W, CHEN H Y, et al. Tracking and aiming adaptive control for unmanned combat ground vehicle on the move based on reinforcement learning compensation[J]. Acta Armamentarii, 2022, 43(8):1947-1955. (in Chinese)
|
[98] |
OSBORNE M J. An introduction to game theory[M]. New York,NY,US: Oxford University Press, 2004.
|
[99] |
MYERSON R B. Game theory[M]. Cambridge,MA,US: Harvard University Press, 2013.
|
[100] |
LIU Y, ZONG C F, HAN X J, et al. Spacing allocation method for vehicular platoon:a cooperative game theory approach[J]. Applied Sciences, 2020, 10(16):5589.
doi: 10.3390/app10165589
URL
|
[101] |
IOAN D, PRODAN I, OLARU S, et al. Mixed-integer programming in motion planning[J]. Annual Reviews in Control, 2021, 51:65-87.
doi: 10.1016/j.arcontrol.2020.10.008
URL
|
[102] |
KESSLER T, KNOLL A. Cooperative multi-vehicle behavior coordination for autonomous driving[C]// Proceedings of 2019 IEEE Intelligent Vehicles Symposium.Washington,D.C.,US:IEEE, 2019:1953-1960.
|
[103] |
NAIK V V, BEMPORAD A. Exact and heuristic methods with warm-start for embedded mixed-integer quadratic programming based on accelerated dual gradient projection:arXiv:2101.09264[R]. Ithaca,NY,US:Cornell University, 2021:2101.09264.
|
[104] |
HAUSER K, LATOMBE J C. Multi-modal motion planning in non-expansive spaces[J]. International Journal of Robotics Research, 2010, 29(7):897-915.
doi: 10.1177/0278364909352098
URL
|
[105] |
MORGAN A S, HANG K Y, WEN B W, et al. Complex in-hand manipulation via compliance-enabled finger gaiting and multi-modal planning[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 4821-4828.
doi: 10.1109/LRA.2022.3145961
URL
|
[106] |
HAUSER K, ZHOU Y L, et al. Asymptotically optimal planning by feasible kinodynamic planning in a state-cost space[J]. IEEE Transactions on Robotics A Publication of the IEEE Robotics & Automation Society, 2016, 32(6):1431-1443.
|