欢迎访问《兵工学报》官方网站,今天是 分享到:

兵工学报 ›› 2023, Vol. 44 ›› Issue (7): 2041-2052.doi: 10.12382/bgxb.2022.0370

• • 上一篇    下一篇

分子黏性对解析湍流壁面函数的影响

王新光1,2, 陈琦1,2, 万钊2,*(), 高晓成2, 燕振国1   

  1. 1 空气动力学国家重点实验室, 四川 绵阳 621010
    2 中国空气动力研究与发展中心 计算所, 四川 绵阳 621000
  • 收稿日期:2022-03-23 上线日期:2023-07-30
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(11972362)

Impact of Molecular Viscosity Variation on the Analytical Wall Function

WANG Xinguang1,2, CHEN Qi1,2, WAN Zhao2,*(), GAO Xiaocheng2, YAN Zhenguo1   

  1. 1 State Key Laboratory of Aerodynamics, Mianyang 621000, Sichuan, China
    2 Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
  • Received:2022-03-23 Online:2023-07-30

摘要:

基于可压缩解析壁面函数(MAWF),考虑高超声速湍流边界层内温度、密度和分子黏性系数变化规律,使用黏性底层边缘处的密度和黏性系数重新定义无量纲壁面距离,并在黏性底层内构造抛物型和双曲型分子黏性系数分布,建立了新的可压缩解析壁面函数,即抛物型(para-MAWF)和双曲型(hyper-MAWF)解析壁面函数。通过高超声速激波边界层干扰算例对其进行验证,并与密网格低雷诺数Lauder-Sharma(LS) k-ε模型和MAWF数值结果进行对比。研究结果表明:所构造的解析壁面函数有效提高了MAWF黏性底层内分子黏性系数和温度分布的预测精度,相较于MAWF其预测的壁面热流结果更接近实验结果;所构造的两种壁面函数中双曲型解析壁面函数预测的壁面热流更接近于实验值,考虑到两种壁面函数数值结果差异较小,在5%之内,且双曲型壁面函数公式更为简单,对于高超声速算例更推荐使用双曲型分布的解析壁面函数。

关键词: 高超声速湍流边界层, 双曲型分布, 抛物型分布, 无量纲壁面距离, 激波边界层干扰

Abstract:

Based on the characteristics of hypersonic turbulent boundary layers, such as temperature, density, and laminar viscosity, the modified analytical wall function is improved to include the alternative definition of the dimensionless wall distance using variables at the edge of the viscous sublayer and the parabolic and hyperbolic variations of viscosity coefficients in the sublayer, named as para-MAWF and hyper-MAWF, respectively. Hypersonic shock boundary layer interactions are used to verify these two wall functions, which are compared with the Lauder-Sharma k-ε using fine meshes and the modified analytical wall function (MAWF). The results show that the proposed wall functions will increase the accuracy of temperature and molecular viscosity variation in the viscous sublayer compared to results by the original MAWF. As a result, the predicted wall heat-flux aligns more closely with experimental measurements, especially in the separation region. The heat flux predicted by hyperbolic analytical wall function agrees better with the experimental value. Considering that the difference of the numerical results predicted by the two wall functions is less than 5%, the hyperbolic wall function is recommended for hypersonic flows due to its simpler formulation.

Key words: hypersonic turbulent boundary layer, hyperbolic variation, parabolic variation, nondimensional wall distance, shock wave turbulence boundary layer interaction