| [1] | 昝文涛, 洪滔, 董贺飞. 铝粉尘云团爆轰温压效应的数值模拟[J]. 兵工学报, 2018, 39(1):101-110.  doi: 10.3969/j.issn.1000-1093.2018.01.011
 | 
																													
																						|  | ZAN W T, HONG T, DONG H F. Numerical simulation of detonation temperature and pressure effects of aluminum powder cloud[J]. Acta Armamentarii, 2018, 39(1):101-110. (in Chinese) | 
																													
																						| [2] | 苗朝阳, 李秀地, 杨森, 等. 耿振刚温压弹爆炸效应与防护技术研究现状[J]. 兵器装备工程学报, 2016, 37(4) 155-159. | 
																													
																						|  | MIAO C Y, LI X D, YANG S, et al. Research status of explosion effect and protection technology of thermobaric bomb[J]. Journal of Ordnance Equipment Engineering, 2016, 37(4):155-159. (in Chinese) | 
																													
																						| [3] | CAO W, SONG Q G, GAO D Y, et al. Detonation characteristics of an aluminized explosive added with boron and magnesium hydride[J]. Propellants, Explosives, Pyrotechnics, 2019, 44(11): 1393-1399.  doi: 10.1002/prep.v44.11    
																																					URL
 | 
																													
																						| [4] | YAO M, DING W, RAO G N, et al. Effects of MgH2/Mg(BH4)2 powders on the mechanical sensitivity of conventional explosive compounds[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3):274-279.  doi: 10.1002/prep.v43.3    
																																					URL
 | 
																													
																						| [5] | DING X Y, SHU Y J, CHEN Z Q, et al. Coating of LiBH4 and its effect on the decomposition of RDX and AP[J]. Central European Journal of Energetic Materials, 2017, 14(1): 134-151.  doi: 10.22211/cejem/67678    
																																					URL
 | 
																													
																						| [6] | XUE B, MA H H, SHEN Z W. Effect of TiH2 particle size and content on the underwater explosion performance of RDX-based explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7):791-798.  doi: 10.1002/prep.v42.7    
																																					URL
 | 
																													
																						| [7] | COMET M, SCHWARTZ C, SCHNELL F, et al. New detonating compositions from ammonium dinitramide[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(5):742-750.  doi: 10.1002/prep.v46.5    
																																					URL
 | 
																													
																						| [8] | CHENG Y F, MENG X R, FENG C T, et al. The effect of the hydrogen containing material TiH2 on the detonation characteristics of emulsion explosives[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 585-591.  doi: 10.1002/prep.v42.6    
																																					URL
 | 
																													
																						| [9] | WU X L, XU S, PANG A M, et al. Hazard evaluation of ignition sensitivity and explosion severity for three typical MH2(M=Mg, Ti, Zr) of energetic materials[J]. Defence Technology, 2021, 7(4):1262-1268. | 
																													
																						| [10] | CHENG Y F, WU H B, LIU R, et al. Combustion behaviors and explosibility of suspended metal hydride TiH2 dust[J]. International Journal of Hydrogen Energy, 2020, 45(21):12216-12224.  doi: 10.1016/j.ijhydene.2020.02.137    
																																					URL
 | 
																													
																						| [11] | CHENG Y F, MENG X R, SONG S X, et al. Hybrid H2/Ti dust explosion hazards during the production of metal hydride TiH2 in a closed vessel[J]. International Journal of Hydrogen Energy, 2019, 44:11145-11152.  doi: 10.1016/j.ijhydene.2019.02.189    
																																					URL
 | 
																													
																						| [12] | CHENG Y F, MENG X R, MA H H, et al. Flame propagation behaviors and influential factors of TiH2 dust explosions at a constant pressure[J]. International Journal of Hydrogen Energy, 2018, 43:16355-16363.  doi: 10.1016/j.ijhydene.2018.06.145    
																																					URL
 | 
																													
																						| [13] | 田培培, 张猛, 王高, 等. 基于红外热像仪的温压弹爆炸温度场测试[J]. 红外技术, 2016, 38(3):260-265. | 
																													
																						|  | TIAN P P, ZHANG M, WANG G, et al. Explosive temperature field test of the thermobaric bomb based on the infrared thermal imager[J]. Infrared Technology, 2016, 38(3):260-265. (in Chinese) | 
																													
																						| [14] | 许仁翰, 周钇捷, 狄长安, 等. 基于高速成像的爆炸温度场测试方法[J]. 兵工学报, 2021, 42(3): 640-647.  doi: 10.3969/j.issn.1000-1093.2021.03.021
 | 
																													
																						|  | XU R H, ZHOU Y J, DI C A, et al. A temperature measuring method for explosive temperature field based on high-speed imaging technology[J]. Acta Armamentarii, 2021, 42(3):640-647. (in Chinese)  doi: 10.3969/j.issn.1000-1093.2021.03.021
 | 
																													
																						| [15] | DENDMORE J M, HOMAN B E, BISS M M, et al. High-speed two-camera imaging pyrometer for mapping fireball temperatures[J]. Applied Optics, 2011, 50(33):6267-6271.  doi: 10.1364/AO.50.006267    
																																					URL
 | 
																													
																						| [16] | CHENG Y F, YAO Y L, WANG Z H, et al. An improved two-colour pyrometer based method for measuring dynamic temperature mapping of hydrogen-air combustion[J]. International Journal of Hydrogen Energy, 2021, 46:34463-34468.  doi: 10.1016/j.ijhydene.2021.07.224    
																																					URL
 | 
																													
																						| [17] | 孔成栋, 于丹, 姚强, 等. 基于彩色火焰图像的铝、硼纳米颗粒燃烧特性[J]. 光学精密工程, 2015, 23(8):2288-2295. | 
																													
																						|  | KONG C D, YU D, YAO Q, et al. Combustion characteristics of aluminum and boron nanoparticles based on flame color images[J]. Optics and Precision Engineering, 2015, 23(8):2288-2295. (in Chinese)  doi: 10.3788/OPE.    
																																					URL
 | 
																													
																						| [18] | ADAMS JR J E, HAMILTON JR J F. Adaptive color plane interpolation in single sensor color electronic camera: US05652621A[P]. 1997-07-29. | 
																													
																						| [19] | 刘文近, 程扬帆, 陆松来, 等. PVAc弹性微球包覆的高能化学点火具的点火性能[J]. 含能材料, 2018, 26(6):530-536. | 
																													
																						|  | LIU W J, CHENG Y F, LU S L, et al. Ignition performance of the high energy chemical igniter coated with a PVAc elastic microspher[J]. Chinese Journal of Energetic Materials, 2018, 26(6): 530-536. (in Chinese) | 
																													
																						| [20] | JULIEN P, VICKERY J, GOROSHIN S, et al. Freely-propagating flames in aluminum dust clouds[J]. Combustion and Flame, 2015, 162:4241-4253.  doi: 10.1016/j.combustflame.2015.07.046    
																																					URL
 |