[1] ZHANG Y M, ZHU L S, WANG X G. Advanced method to estimate reliability-based sensitivity of mechanical components with strongly nonlinear performance function[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1325-1336. [2] 洪林雄, 李华聪, 彭凯, 等. 基于高效搜索方法的可靠性分析改进响应面法[J]. 北京航空航天大学学报, 2020, 46(1):95-102. HONG L X, LI H C, PENG K, et al. Improved response surface method of reliability analysis based on efficient search method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1):95-102.(in Chinese) [3] HUANG X, LI Y, ZHANG Y, et al. A new direct second-order reliability analysis method[J]. Applied Mathematical Modelling, 2018, 55: 68-80. [4] KESHTEGAR B, CHAKRABORTY S. A hybrid self-adaptive conjugate first order reliability method for robust structural reliabi-lity analysis[J]. Applied Mathematical Modelling, 2018, 53: 319-332. [5] 杨周, 郭丙帅, 张义民, 等. 基于随机载荷和强度退化的可靠性灵敏度分析[J]. 东北大学学报, 2019, 40(5):678-682. YANG Z, GUO B S, ZHANG Y M, et al. Reliability sensitivity analysis based on random load and strength degradation[J]. Journal of Northeastern University, 2019, 40(5):678-682. (in Chinese) [6] RICHARD J F, ZHANG W. Efficient high-dimensional importance sampling[J]. Journal of Econometrics, 2007, 141(2):1385-1411. [7] CAI J L, XU Q S, CAO M J, et al. A novel importance sampling method of power system reliability assessment considering multi-state units and correlation between wind speed and load[J]. International Journal of Electrical Power & Energy Systems, 2019, 109: 217-226. [8] 吕震宙, 刘成立, 傅霖.多模式自适应重要抽样法及其应用[J].力学学报, 2006, 38(5):705-711. L Z Z, LIU C L, FU L. An adaptive importance sampling algorithm and its application for multiple failure modes[J]. Chinese Journal of Theoretical and Applied Mechanics, 2006, 38(5):705-711. (in Chinese) [9] GOSWAMI S, GHOSH S, CHAKRABORTY S. Reliability analysis of structures by iterative improved response surface method[J]. Structural Safety, 2016, 60:56-66. [10] HADIDI A, AZAR B F, RAFIEE A. Efficient response surface method for high-dimensional structural reliability analysis[J]. Structural Safety, 2017, 68:15-27. [11] 朱丽莎, 张义民, 卢昊, 等. 基于神经网络的转子振动可靠性灵敏度分析[J]. 计算机集成制造系统, 2012, 18(1):149-155. ZHU L S, ZHANG Y M, LU H, et al. Reliability sensitivity analysis of rotor vibration based on neural network[J]. Computer Integrated Manufacturing Systems, 2012, 18(1):149-155. (in Chinese) [12] 佟操, 孙志礼, 杨丽, 等. 一种基于Kriging和Monte Carlo的主动学习可靠度算法[J]. 航空学报, 2015, 36(9):2992-3001. TONG C, SUN Z L, YANG L, et al. An active learning reliabi- lity algorithm based on Kriging and Monte Carlo[J]. Acta Aeronautica et Astronautica Sinca, 2015, 36(9):2992-3001. (in Chinese) [13] 金燕, 刘少军. 基于人工神经网络的航空轴承疲劳可靠性分析[J]. 东北大学学报, 2018, 39(6):850-855. JIN Y, LIU S J. Fatigue reliability analysis of aviation bearings based on ANN[J]. Journal of Northeastern University, 2018, 39(6): 850-855. (in Chinese) [14] DU X, CHEN W. A most probable point based method for efficient uncertainty analysis[J]. Journal of Design and Manufacturing Automation, 2001, 4(1):47-66. [15] 秦权, 林道锦. 基于FORM的Monte Carlo精度修正可靠度算法[J]. 清华大学学报, 2004, 44(9):1249-1255. QIN Q, LIN D J. Monte Carlo updating reliability algorithm based on FORM[J]. Journal of Tsinghua University, 2004, 44(9): 1249-1255. (in Chinese) [16] 李云贵, 赵国藩.广义随机空间内的一次可靠度分析方法[J].大连理工大学学报, 1993, 33(1):1-5. LI Y G, ZHAO G F. Method for structural reliability analysis in generalized random space[J]. Journal of Dalian University of Technology, 1993, 33(1):1-5. (in Chinese) [17] 令锋, 傅守忠, 陈树敏, 等. 数值计算方法[M]. 北京:国防工业出版社, 2012:66-78. LING F, FU S Z, CHEN S M, et al. Numerical methods[M]. Beijing:National Defense Industry Press, 2012:66-78. (in Chinese) [18] 陈鹏霏, 刘海芳, 刘巧伶. 基于对分区间抽样法的结构可靠性灵敏度分析[J]. 中国科学技术大学学报, 2015, 45(9):763-769. CHEN P F, LIU H F, LIU Q L. An analysis method for structural reliability sensitivity based on the bisection method of sampling[J]. Journal of University of Science and Technology of China, 2015, 45(9):763-769. (in Chinese) [19] 陈鹏霏, 于泰龙, 和鹏, 等. 蒙特卡罗法液压缸动态特征可靠性灵敏度分析[J]. 井冈山大学学报(自然科学版), 2020, 41(3):60-63. CHEN P F, YU T L, HE P, et al. Reliability sensitivity analysis of dynamic characteristics of hydraulic cylinder based on Monte Carlo method[J]. Journal of Jinggangshan University(Natural Science), 2020, 41(3):60-63. (in Chinese)
|