欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2014, Vol. 35 ›› Issue (12): 2087-2091.doi: 10.3969/j.issn.1000-1093.2014.12.022

• 论文 • 上一篇    下一篇

基于混合噪声模型的射线图像降噪方法

申清明, 王国博, 赵建中, 许管利   

  1. (西北机电工程研究所, 陕西 咸阳 712099)
  • 收稿日期:2014-03-01 修回日期:2014-03-01 上线日期:2015-02-06
  • 作者简介:申清明(1981—),男,工程师,博士

Multi-noise Model-based Denoising Method for Radiographic Image

SHEN Qing-ming, WANG Guo-bo, ZHAO Jian-zhong, XU Guan-li   

  1. (Northwest Institute of Mechanical & Electrical Engineering, Xianyang 712099, Shaanxi, China)
  • Received:2014-03-01 Revised:2014-03-01 Online:2015-02-06

摘要: 针对射线数字图像的特点,提出了一种基于混合噪声模型的小波中值滤波降噪方法。对射线数字图像噪声成分构成进行分析,建立了混合噪声模型。根据混合噪声模型来计算噪声方差,进而计算BayesShrink阈值,解决了BayesShrink阈值计算中因射线数字图像小波系数不服从广义高斯分布而导致的Donoho噪声方差计算方法失效的问题。为了消除BayesShrink阈值处理引起的图像失真,对小波阈值处理结果进行中值滤波。采用射线数字图像对该方法的有效性进行了验证,实验表明,该方法的降噪效果优于OracleShrink和SureShrink阈值法。

关键词: 信息处理技术, 混合噪声模型, 小波, 图像降噪

Abstract: A multi-noise model-based denoising method for radiographic image is proposed, in which wavelet transform and median filtering are used. The composition of the image noise is analyzed, and a multi-noise model is established. The variance of noise is calculated in terms of the multi-noise model, and then the BayesShrink threshold is calculated , which solves the problem of that the Donoho’s noise algorithm is invalidated since the wavelet coefficients do not obey the generalized Gaussian distribution. A median filtering is used to refine the result obtained by the wavelet transform to eliminate the image distortion caused by the BayesShrink thresholding. Radiographic images are used to verify the effectiveness of the proposed method. Experiments show that the performance of the proposed method is better than those of OracleShrink and SureShrink.

Key words: information processing technology, multi-noise model, wavelet, image denoising

中图分类号: