[1] |
班多兴. 合成孔径声呐图像预处理技术研究与应用[D]. 杭州: 杭州电子科技大学, 2020.
|
|
BAN D X. Research and application of synthetic aperture sonar image preprocessing technology[D]. Hangzhou: Hangzhou Dianzi University, 2020. (in Chinese)
|
[2] |
范乃强. 高分辨率合成孔径声纳成像关键技术研究[D]. 西安: 西北工业大学, 2018.
|
|
FAN N Q. Research on the key imaging technology of high-resolution synthetic aperture sonar[D]. Xi'an: Northwestern Polytechnical University, 2018. (in Chinese)
|
[3] |
魏波. 多波束合成孔径声呐关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
|
|
WEI B. Research on the key technology based on multi-beam synthetic aperture sonar[D]. Harbin: Harbin Engineering University, 2021. (in Chinese)
|
[4] |
杨崇智. 基于偏微分方程改进模型的声呐图像增强方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
|
|
YANG C Z. Research on sonar image enhancement based on improved model of partial differential equation[D]. Harbin: Harbin Engineering University, 2018. (in Chinese)
|
[5] |
WANG X Y, WANG L Y, LI G L, et al. A robust and fast method for sidescan sonar image segmentation based on region growing[J]. Sensors, 2021, 21:6960.
|
[6] |
ZHAO J H, YAN J, ZHANG H M, et al. A new radiometric correction method for side-scan sonar images in consideration of seabed sediment variation[J]. Remote Sensing, 2017, 9(6):1-18.
|
[7] |
LIU Y F, YE X F. A Gray scale correction method for side-scan sonar images considering rugged seafloor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-10.
|
[8] |
AL-RAWI M, GALDRAN A, ISASI A, et al. Cubic spline regression based enhancement of side-scan sonar imagery[C]// Proceedings of OCEANS 2017-Aberdeen. Aberdeen,UK: IEEE, 2017:1-7.
|
[9] |
AL-RAWI M, GALDRáN A, YUAN X, et al. Intensity normalization of sidescan sonar imagery[C]// Proceedings of the 2016 Sixth International Conference on Image Processing Theory,Tools and Applications. Oulu,Finland: IEEE, 2016:1-6.
|
[10] |
GALDRAN A, ISASI A, AL-RAWI M, et al. An efficient non-uniformity correction technique for side-scan sonar imagery[C]// Proceedings of OCEANS 2017-Aberdeen. Aberdeen,UK: IEEE, 2017:1-6.
|
[11] |
李更祥, 刘纪元, 李宝奇, 等. 局部背景变分迭代下的合成孔径声呐图像自适应均衡[J]. 石油地球物理勘探, 2022, 57(6):1342-1351.
|
|
LI G X, LIU J Y, LI B Q, et al. Adaptive equalization of synthetic aperture sonar image under local background variational iteration[J]. Oil Geophysical Prospecting, 2022, 57(6):1342-1351. (in Chinese)
|
[12] |
LI S B, SHANG X D, WANG S Q, et al. A geometric and radiometric-invariant matching method for SSS and MBES data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:1-13.
|
[13] |
YE X F, GE X K, YANG H B. A gray scale correction method for side-scan sonar images based on GAN[C]// Proceedings of Global Oceans 2020:Singapore-US Gulf Coast. Biloxi,MS,US: IEEE, 2020:1-5.
|
[14] |
LU Z W, ZHU T W, ZHOU H Y, et al. An image enhancement method for side-scan sonar images based on multi-stage repairing image fusion[J]. Electronics, 2023, 12(17):1-18.
|
[15] |
MUTHURAMAN D L, SANTHANAM S M. Contrast improvement on side scan sonar images using retinex based edge preserved technique[J]. Marine Geophysical Research, 2022, 43(2):1-15.
|
[16] |
ZHOU P, CHEN J F, TANG P, et al. A Multi-Scale Fusion Strategy for Side Scan Sonar Image Correction to Improve Low Contrast and Noise Interference[J]. Remote Sensing, 2024, 16(10):1-22.
|
[17] |
YE X F, YANG H B, LI C L, et al. A gray scale correction method for side-scan sonar images based on retinex[J]. Remote Sensing, 2019, 11(11):1281-1301.
|
[18] |
LI S B, ZHAO J H, YU Y C, et al. Anisotropic total variation regularized low-rank approximation for SSS images radiometric distortion correction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60:1-12.
|
[19] |
LI S B, ZHAO J H, WU Y L, et al. SSS radiometric distortion correction based on variational retinex framework with consideration for sediment characteristics[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-11.
|
[20] |
ZHUANG L N, NG M K, LIU Y. Cross-track illumination correction for hyperspectral pushbroom sensor images using low-rank and sparse representations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-17.
|
[21] |
ZHAO J H, WANG X, ZHANG H M, et al. A comprehensive bottom-tracking method for sidescan sonar image influenced by complicated measuring environment[J]. IEEE Journal of Oceanic Engineering, 2017, 42(3):619-631.
|
[22] |
田霁. 声纳图像预处理与分割方法研究[D]. 成都: 电子科技大学, 2021.
|
|
TIAN J. Research on sonar image preprocessing and segmentation[D]. Chengdu: University of Electronic Science and Technology of China, 2021. (in Chinese)
|
[23] |
LAND E H. The retinex theory of color vision[J]. Scientific American, 1978, 237(6):108-128.
|
[24] |
DANIEL J J, ZIA-UR R. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3):451-462.
pmid: 18282940
|
[25] |
JOBSON D J, RAHMAN Z, WOODELL G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 2002, 6(7):965-976.
|
[26] |
KIMMEL R, ELAD M, SHAKED D, et al. A variational framework for retinex[J]. International Journal of Computer Vision, 2003, 52(1):7-23.
|
[27] |
FARBMAN Z, FATTAL R, LISCHINSKI D, et al. Edge-preserving decompositions for multi-scale tone and detail manipulation[J]. ACM Transactions on Graphics, 2008, 27(3):1-10.
|
[28] |
CAI B L, XU X M, GUO K L, et al. A joint intrinsic-extrinsic prior model for retinex[C]// Proceedings of 2017 IEEE International Conference on Computer Vision. Venice,Italy: IEEE, 2017:4020-4029.
|