欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于全变分Retinex框架的合成孔径声纳图像均衡方法

钟何平,雷亮*,李涵,唐劲松   

  1. 海军工程大学
  • 收稿日期:2024-07-23 修回日期:2025-04-23
  • 基金资助:
    国家自然科学基金项目(42176187);山东省自然基金面上项目(ZR2023MD122)

Synthetic Aperture Sonar Image Equalization Method Based on the Total Variation Retinex Framework

ZHONG Heping,LEI Liang*, LI Han, TANG Jinsong   

  1. Naval University of Engineering
  • Received:2024-07-23 Revised:2025-04-23

摘要: 针对合成孔径声纳图像灰度不均衡所带来的视觉分辨率低的问题,在结合声纳回波模型、斑点噪声统计特性、分解模型先验假设的基础上,提出一种基于全变分Retinex框架的合成孔径声纳图像均衡方法。根据图像中噪声瑞利乘性分布的特点和极大似然估计推导出考虑背景噪声的合成孔径声纳图像分解模型;针对地形、波束模式、沉积物角度响应和噪声影响,通过对照度分量的分段平滑约束,反射分量的沉积物回波强度信息约束和各向异性全变分约束,建立合成孔径声纳图像分解的目标函数。对照度分量增强后,与反射分量相乘得到均衡图像。实验结果表明,该模型解决了合成孔径声纳图像亮度不均衡的问题,极大地提升了亮度和对比度,在噪声抑制和图像均衡方面优于现有方法。

关键词: 合成孔径声纳, 图像均衡, Retinex全变分, 乘性噪声, 平均距离向

Abstract: To address the issue of low visual resolution caused by imbalanced grayscale in synthetic aperture sonar images, a synthetic aperture sonar image equalization method based on the total variation framework is proposed by combining the sonar echo model, speckle noise statistical characteristics, and decomposition model prior assumptions. Firstly, the synthetic aperture sonar image decomposition model considering background noise is derived based on the characteristics of the Rayleigh multiplicative distribution of noise in the image and maximum likelihood estimation; Then, in response to the terrain and beam patterns of the illumination component, the sediment angle response of the reflection component, and the influence of noise, the objective function for the decomposition of synthetic aperture sonar images is established through segmented smoothing constraints on the illumination component, sediment echo intensity information constraints on the reflection component, and anisotropic total variation constraints; Finally, after enhancing the contrast component, the balanced image is obtained by multiplying it with the reflection component. The experimental results show that the model solves the problem of uneven brightness in SAS images, greatly improves brightness and contrast, and outperforms existing methods in noise suppression and image equalization.

Key words: synthetic aperture sonar, image equalization, retinex variational, multiplicative noise;average distance direction

中图分类号: