[1] |
程锦房, 喻鹏, 张伽伟, 等. 水下电场探测定位技术应用研究现状[J]. 海军工程大学学报, 2022, 34(4): 68-74.
|
|
CHENG J F, YU P, ZHANG J W, et al. Application and development of underwater electric field detection and location technology[J]. Journal of Naval University of Engineering, 2022, 34(4):68-74. (in Chinese)
|
[2] |
胡育诚, 王向军, 汪石川. 基于MEFD-小波阈值降噪的舰船电场特征提取[J]. 华中科技大学学报(自然科学版), 2024, 52(4):88-93.
|
|
HU Y C, WANG X J, WANG S C. Feature extraction of ship shaft electric field based on MEFD-wavelet threshold denoising[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(4):88-93. (in Chinese)
|
[3] |
杨鹏程, 杨靖浩, 姜润翔. 舰船腐蚀相关静态电场水下电位特征研究[J]. 水下无人系统学报, 2023, 31(4): 545-551.
|
|
YANG P C, YANG J H, JIANG R X. Underwater potential characteristics of static electric field related to ship corrosion[J]. Journal of Unmanned Undersea Systems, 2023, 31(4): 545-551. (in Chinese)
|
[4] |
JIANG K, ZHENG P F, CHEN M H. et al. Low-noise multi-channel underwater electric field measurement and analysis system for a ship model[J]. The Review of Scientific Instruments, 2024, 95(1):014703.
|
[5] |
牟兰. 国外舰船电场特性研究及其在水雷战上的应用[J]. 舰船科学技术, 2012, 34(9): 138-142.
|
|
MOU L. The characteristic research of foreign warship’s electric field and its application on mine warfare[J]. Ship Science and Technology, 2012, 34(9):138-142. (in Chinese)
|
[6] |
BOSTICK F, SMITH H, BOEHL J. The detection of ULF-ELF emissions from moving ships[R]. New York,NY, US: State Academic Educational Institutions,1977.
|
[7] |
姜润翔, 陈新刚, 张伽伟, 等. 舰船电场及其应用[M]. 北京: 国防工业出版社, 2020: 1-23.
|
|
JIANG R X, CHEN X G, ZHANG J W, et al. Ship electric field and applications[M]. Beijing: National Defense Industry Press, 2020:1-23. (in Chinese)
|
[8] |
FANG F, WANG X J, LIU D H, et al. Analysis of static electric field characteristics of ships in flowing medium[J]. Journal of Physics: Conference Series, 2020, 1707(1): 012009.
|
[9] |
SUN Q, JIANG R X, YU P. Inversion of the equivalent electric dipole moment of ship’s corrosion-related static electric field in frequency domain[J]. Mathematical Problems in Engineering, 2020, 2020(1): 3486082.
|
[10] |
SCHADFER D, THIEL C, DOOSE J. Above water electric potential signatures of submerged naval vessels[J]. Journal of Marine Science and Engineering, 2019, 7(2):1-12.
|
[11] |
陈聪, 蒋治国, 姚陆锋, 等. 浅海中潜艇腐蚀相关静态电磁信号特征[J]. 海军工程大学学报, 2014, 26(3): 1-6.
|
|
CHEN C, JIANG Z G, YAO L F, et al. Characteristics analysis of corrosion-related static electromagnetic produce by a submarine in shallow sea[J]. Journal of Naval University of Engineering, 2014, 26(3):1-6. (in Chinese)
|
[12] |
LIANG C H, YAO J D, HUANG N B. et al. Research on the shaft-frequency electric field character of ship’s physical scale model[J]. Advanced Materials Research, 2014, 1035: 62-66.
|
[13] |
胡鹏, 龚沈光, 胡英娣. 基于小波包熵的船舶轴频电场信号检测[J]. 华中科技大学学报(自然科学版), 2011, 39(11): 15-18.
|
|
HU P, GONG S G, HU Y D. Detection of ship shaft-rate electric field signals using wavelet packet entropy[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2011, 39(11): 15-18. (in Chinese)
|
[14] |
喻鹏, 程锦房, 张伽伟, 等. 基于自适应滤波的晃动相关电场噪声抑制方法[J]. 华中科技大学学报(自然科学版), 2021, 49(4): 61-66.
|
|
YU P, CHENG J F, ZHANG J W, et al. Sway related electric field noise suppressing method based on adaptive filter[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2021, 49(4): 61-66. (in Chinese)
|
[15] |
喻鹏, 程锦房, 张伽伟, 等. 基于Rao检测器的舰船轴频电场滑动门限检测方法[J]. 兵工学报, 2021, 42(4): 827-834.
doi: 10.3969/j.issn.1000-1093.2021.04.016
|
|
YU P, CHENG J F, ZHANG J W, et al. Ship shaft-rate electric field sliding threshold detection method based on Rao detector[J]. Acta Armamentarii, 2021, 42(4): 827-834. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2021.04.016
|
[16] |
CHENG R, JIANG R X, GONG S G. Paris, A multi sub-band sliding detection algorithm of ship shaft-rate electric field signal[C]// France: Atlantis Press, 2016: 172-175.
|
[17] |
孙宝全, 颜冰, 姜润翔, 等. 船舶静电场在船舶跟踪定位中的应用[J]. 水下无人系统学报, 2018, 26(1): 57-62.
|
|
SUN B Q, YAN B, JIANG R X, et al. Application of ship static electric field to ship tracking and positioning[J]. Journal of Unmanned Undersea Systems, 2018, 26(1): 57-62. (in Chinese)
|
[18] |
张伽伟, 喻鹏, 姜润翔, 等. 基于舰船电场的目标跟踪方法研究[J]. 兵工学报, 2020, 41(3):559-566.
doi: 10.3969/j.issn.1000-1093.2020.03.017
|
|
ZHANG J W, YU P, JIANG R X, et al. Research on target tracking method based on ship electric field[J]. Acta Armamentarii, 2020, 41(3):559-566. (in Chinese)
doi: 10.3969/j.issn.1000-1093.2020.03.017
|
[19] |
YU P, CHENG J F, ZHANG J W. Ship target tracking using underwater electric field[J]. Progress in Electromagnetics Research M, 2019, 86: 49-57.
|
[20] |
HU S W, YAN B. Ship tracking with static electric field based on adaptive progressive update extended Kalman filter[J]. MATEC Web of Conferences, 2018, 232: 04063.
|
[21] |
YU H M, MA Y T. A cooperative mission planning method considering environmental factors for UUV swarm to search multiple underwater targets[J]. Ocean Engineering, 2024, 308: 118228.
|
[22] |
BURSUC A, MUNTEANU C, RUS S. Overview on sea drones evolution and their use in modern warfare[J]. Land Forces Academy Review, 2024, 29(2): 195-209.
|