欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2025, Vol. 46 ›› Issue (10): 250507-.doi: 10.12382/bgxb.2025.0507

• • 上一篇    下一篇

基于物质点法的负泊松比胞元夹层结构动态冲击响应及能量耗散机制

杨晨琛1, 刘骏2, 韩芳灏3, 梅跃2,4,*()   

  1. 1 南昌大学 工程建设学院工程力学系, 江西 南昌 330031
    2 大连理工大学 工程力学系工业装备结构分析优化与CAE软件全国重点实验室, 辽宁 大连 116023
    3 新加坡国立大学 设计与工程学院土木与环境工程系, 新加坡 S 117576
    4 大连理工大学 计算力学国际研究中心, 辽宁 大连 116023
  • 收稿日期:2025-06-16 上线日期:2025-11-06
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(12472198); 南昌大学创新基金资助项目(XX202506030013)

Research on Dynamic Impact Response and Energy Dissipation Mechanisms of Auxetic Metamaterial Sandwich Structures with Negative Poisson’s Ratio Based on Material Point Method

YANG Chenchen1, LIU Jun2, HAN Fanghao3, MEI Yue2,4,*()   

  1. 1 Department of Engineering Mechanics, School of Infrastructure Engineering, Nanchang University, Nanchang, 330031, China
    2 State Key Laboratory of Structural Analysis Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116023, China
    3 Department of Civil and Environmental Engineering, College of Design and Engineering, National University of Singapore, Singapore, S 117576, Singapore
    4 International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116023, China
  • Received:2025-06-16 Online:2025-11-06

摘要: 负泊松比结构因其拉胀变形行为,在冲击载荷下展现出优异的能量分散与应力均匀化能力,在军事防护领域具有广阔应用前景。然而,传统网格类数值方法(如有限元法)在模拟大变形时易因网格畸变导致计算精度下降甚至中断。采用物质点法系统研究了三种典型胞元(正六边形蜂窝、内凹六边形和波浪形手性)夹层结构在冲击载荷下的动态响应与能量耗散机制,并通过网格独立性检验和实验验证,证实该方法具有良好的网格收敛性与物理保真度。结果表明,负泊松比结构抗冲击性能显著优于常规结构:相较于正六边形蜂窝结构,内凹六边形和波浪形手性结构的峰值反力分别降低27.9%和61.9%。机理分析表明,波浪形手性结构通过“环链旋转-韧带延展-孔隙闭合”的多级耗能机制,促使能量沿胞元网络均匀耗散,从而有效抑制应力集中与结构失效。本研究为舰艇防爆、单兵装甲等防护装备的轻量化抗冲击设计提供了理论依据与仿真工具。

关键词: 物质点法, 负泊松比结构, 动态冲击, 能量耗散机制, 轻量化防护

Abstract:

Structures with negative Poisson’s ratios (NPR) exhibit superior energy dispersion and stress homogenization capabilities under impact loading due to their unique auxetic deformation behavior, demonstrating broad application prospects in military protection. However, conventional mesh-based numerical methods such as the Finite Element Method (FEM) often suffer from reduced accuracy or even computational interruption due to mesh distortion when simulating extreme nonlinear behaviors like large deformation and fracture. To address this, the present study employs the Material Point Method (MPM) to systematically investigate the dynamic response and energy dissipation mechanisms of three typical cellular sandwich structures (regular hexagonal honeycomb, re-entrant hexagon, and chiral wave core) under impact loading. Through mesh convergence analysis and experimental validation, the MPM is demonstrated to possess good numerical convergence and physical fidelity in simulating such extreme deformation scenarios. The results indicate that the NPR effect significantly improves the impact resistance of the structures: compared to the conventional hexagonal honeycomb structure (positive Poisson’s ratio), the re-entrant hexagonal structure exhibits a 27.9% reduction in peak reaction force, while the chiral wave cellular structure achieves a reduction of 61.9%. Further mechanistic analysis reveals that the chiral structure facilitates uniform dissipation of impact energy throughout the cellular network via a multi-stage energy absorption mechanism—comprising ring rotation, ligament extension, and pore closure—thereby effectively mitigating local stress concentration and structural failure. This study provides theoretical support and simulation tools for the lightweight anti-impact design of protective equipment such as naval blast protection and personal armor.

Key words: material point method, auxetic structure, impact dynamics, energy dissipation, lightweight protection