欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (2): 488-496.doi: 10.12382/bgxb.2022.0762

• • 上一篇    下一篇

面向目标体系网络的节点重要性排序方法

袁博文, 刘东波*(), 刘兆鹏, 杨伟龙   

  1. 军事科学院 战争研究院, 北京 100091
  • 收稿日期:2022-08-31 上线日期:2024-02-29
  • 通讯作者:
  • 基金资助:
    国家自然科学基金青年科学基金项目(62103438)

Node Importance Ranking Method for Target SoS Network

YUAN Bowen, LIU Dongbo*(), LIU Zhaopeng, YANG Weilong   

  1. War Research Institute, Academy of Military Sciences, Beijing 100091, China
  • Received:2022-08-31 Online:2024-02-29

摘要:

针对现有复杂网络节点重要性排序方法无法处理目标体系网络节点异质连边有向有权的难题,提出一种面向目标体系网络的节点重要性排序方法。利用K-shell算法计算网络节点的初始重要值,并在PageRank算法的节点重要性传递中考虑重要性分配趋强的特点和连边权重,提出K-shell和PageRank扩展(Extended K-shell and PageRank,EKSPR)算法,并给出EKSPR算法的收敛性证明,进行了作战仿真实验验证和算例对比分析。实验结果表明,EKSPR算法相对于K-shell算法和PageRank算法更适用于处理目标体系网络节点重要性排序,并且效率优于均值EKSPR算法。

关键词: 目标体系网络, 节点重要性, K-shell算法, PageRank算法, K-shell和PageRank扩展算法

Abstract:

The existing node importance ranking methods of complex networks cannot deal with the target system of systems (SoS) network with heterogeneous nodes and directed and weighted edges. To solve this problem, a node importance ranking method for the target SoS network is proposed. It uses the K-shell algorithm to calculate the initial importance value of network nodes. In the node importance transfer of the PageRank algorithm, the characteristics of strong importance distribution and edge weight are considered. The extended K-shell and PageRank (EKSPR) algorithm is proposed, and the convergence proof of the EKSPR algorithm is given. It is verified by the combat simulation experiment and compared with the numerical example. The experimental results show that the EKSPR algorithm is more suitable than the K-shell and PageRank algorithms for the node importance ranking of the target SoS network, and that its efficiency is better than the average EKSPR algorithm.

Key words: target SoS network, node importance, K-shell algorithm, PageRank algorithm, extended K-shell and PageRank algorithm

中图分类号: