[1] 陈曼, 周凤星. 改进粒子群算法的舰载武器目标分配[J]. 火力与指挥控制, 2018, 43(11):72-76. CHEN M, ZHOU F X. Shipborne weapon-target assignment based on improved particle swarm optimization[J]. Fire Control & Command Control, 2018, 43(11):72-76. (in Chinese) [2] 黄大山, 徐克虎, 王天召. 求解WTA问题的智能算法评价准则[J]. 火力与指挥控制, 2013, 38(8):43-46. HUANG D S, XU K H, WANG T Z. An evaluation criteria for intelligent algorithm in solving weapon target assignment problem [J]. Fire Control & Command Control, 2013, 38(8):43-46. (in Chinese) [3] 杨飞, 王青, 侯砚泽. 基于整数域改进粒子群优化算法的多平台武器目标分配[J]. 兵工学报, 2011, 32(7):906-912. YANG F, WANG Q, HOU Y Z. Weapon-target assignment in multi-launcher system based on improved integer field particle swarm optimization algorithm[J]. Acta Armamentarii, 2011, 32(7): 906-912. (in Chinese) [4] 董朝阳, 路遥, 王青. 改进的遗传算法求解火力分配优化问题[J]. 兵工学报, 2016, 37(1):97-102. DONG C Y, LU Y, WANG Q. Improved genetic algorithm for solving firepower distribution[J]. Acta Armamentarii, 2016, 37(1): 97-102. (in Chinese) [5] 刘家义, 王刚, 张杰, 等. 基于改进AGD-分布式多智能体系统的目标优化分配模型[J]. 系统工程与电子技术, 2020, 42(4): 863-870. LIU J Y, WANG G, ZHANG J, et al. Target optimal assignment model based on improved AGD-distributed multi-agent system[J]. Systems Engineering and Electronics, 2020, 42(4):863-870. (in Chinese) [6] 杨进帅, 李进, 王毅. 武器-目标分配问题研究[J]. 火力与指挥控制, 2019, 44(5):6-11. YANG J S, LI J, WANG Y. Study of weapon target assignment problem[J]. Fire Control & Command Control, 2019, 44(5):6-11. (in Chinese) [7] 李廷鹏, 钱彦岭, 李岳. 基于改进匈牙利算法的多技能人员调度方法[J]. 国防科技大学学报, 2016, 38(2):144-149. LI T P, QIAN Y L, LI Y. Multi-skilled labor allocating method based on improved Hungary algorithm[J]. Journal of National University of Defense Technology, 2016, 38(2):144-149. (in Chinese) [8] ZHU H B, LIU D N, ZHANG S Q, et al. Solving the many to many assignment problem by improving the Kuhn-Munkres algorithm with backtracking[J]. Theoretical Computer Science, 2016, 618:30-41. [9] CHOPRA S, NOTARSTEFANO G, RICE M, et al. A distributed version of the Hungarian method for multirobot assignment[J]. IEEE Transactions on Robotics, 2017, 33(4):932-947. [10] 柳毅, 佟明安. 匈牙利算法在多目标分配中的应用[J]. 火力与指挥控制, 2002, 27(4):34-37. LIU Y, TONG M A. An application of Hungarian algorithm to the multi-target assignment[J]. Fire Control & Command Control, 2002, 27(4):34-37. (in Chinese) [11] 谷稳. 基于进化匈牙利算法的目标分配问题研究及应用[D]. 西安:西安电子科技大学, 2013. GU W. Study and application of target allocation based on evolution Hungarian algorithm[J]. Xi'an: Xi'an University of Electronic Science and Technology, 2013. (in Chinese) [12] 李元左, 杨晓段. 炮兵火力分配建模及优化方法[J]. 指挥控制与仿真, 2015, 37(2):48-52. LI Y Z, YANG X D. Optimal assignment model of artillery firepower[J]. Command Control & Simulation, 2015, 37(2):48-52. (in Chinese) [13] KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics Quarterly, 1955, 2(1):83-97. [14] BOURGEOIS F, LASSALLE J. An extension of the Munkres algorithm for the assignment problem to rectangular matrices[J]. Communications of the ACM, 1971, 14(12):802-804. [15] 陈彬, 韩林, 余旺盛, 等. 基于改进遗传算法的装备调配[J]. 系统工程, 2010, 28(9):98-102. CHEN B, HAN L, YU W S, et al. Equipment distribution based on modified genetic algorithm[J]. Systems Engineering, 2010, 28(9):98-102. (in Chinese) [16] 孙晓雅, 林焰. 一种新的离散粒子群算法在指派问题中的应用[J]. 计算机应用研究, 2009, 26(11):4091-4093,4097. SUN X Y, LIN Y. Using new DPSO algorithm to solve assignment problem[J]. Application Research of Computers, 2019, 26(11): 4091-4093,4097. (in Chinese)
下3篇留版,1篇重排
|