[1] HU L, ZHANG J, GAO F. A building extraction method using shadow in high resolution multispectral images[C]∥Proceedings of International Geoscience and Remote Sensing Symposium. Vancouver, BC, Canada: IEEE, 2011: 24-29. [2] KONSTANTINIDIS D, STATHAKI T, ARGYRIOU V, et al. Building detection using enhanced HOG-LBP features and region refinement processes[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 10(3): 888-905. [3] 刘静, 温显斌. 基于改进MRF的高分辨率SAR图像中建筑物轮廓提取算法[J]. 天津理工大学学报, 2014, 30(6):28-32. LIU J, WEN X B. Building extraction from very high resolution SAR images based on improved Markov random field models[J]. Journal of Tianjin University of Technology, 2014,30(6):28-32. (in Chinese) [4] 姜萍, 刘修国, 陈启浩, 等. 利用多尺度SVM-CRF模型的极化SAR图像建筑物提取[J]. 遥感技术与应用, 2017, 32(3):475-482. JIANG P, LIU X G, CHEN Q H, et al. A multi-scale SVM-CRF model for buildings extraction from polarimetric SAR images[J]. Remote Sensing Technology and Application, 2017, 32(3):475-482. (in Chinese) [5] DING J, CHEN B, LIU H W, et al. Convolutional neural network with data augmentation for SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(3): 364-368. [6] 李健伟, 曲长文, 彭书娟,等. 基于卷积神经网络的SAR图像舰船目标检测[J]. 系统工程与电子技术, 2018, 40(9):1953-1959. LI J W, QU C W, PENG S J, et al. Ship detection in SAR images based on convolutional neural network[J]. Systems Engineering and Electronics, 2018, 40(9):1953-1959. (in Chinese) [7] 郭智, 宋萍, 张义, 等. 基于深度卷积神经网络的遥感图像飞机目标检测方法[J]. 电子与信息学报, 2018, 40(11): 2684-2690. GUO Z, SONG P, ZHANG Y, et al. Aircraft detection method based on deep convolutional neural network for remote sensing images[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2684-2690. (in Chinese) [8] CORENTIN H, MAJID A S, NINA M. Road segmentation in SAR satellite images with deep fully convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(12):1867-1871. [9] SHAHZAD M, MAURER M, FRAUNDORFER F, et al. Buildings detection in VHR SAR images using fully convolution neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 57(2):1100-1116.
[10] WANG P Y, PATEL V M. Generating high quality visible images from SAR images using CNNs[C]∥Proceedings of 2018 IEEE Radar Conference. Oklahoma City, OK,US: IEEE, 2018:570-575. [11] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, US: IEEE, 2014:580-587. [12] GIRSHICK R. Fast R-CNN[C]∥Proceedings of IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015:1440-1448. [13] REN S Q, HE K M, GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6):1137-1149. [14] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, US: IEEE, 2016:779-788. [15] LIU W, ANGUELOV D, ERHAN D, et al. SSD: singleshot multibox detector[C]∥Proceedings of European Conference on Computer Vision. Cambridge, MA, US: MIT Press, 2016:21-37. [16] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, US: IEEE, 2017:6517-6525. [17] REDMON J, FARHADI A. YOLOv3: an incremental improvement: arXiv: 1804.02767v1[R/OL]. Ithaca, NY, US: Cornell University, (2018-04-08) [2019-05-15]. https:∥arxiv.org/abs/1804.02767. [18] 李健伟,曲长文,彭书娟,等. 基于生成对抗网络和线上难例挖掘的SAR图像舰船目标检测[J]. 电子与信息学报, 2019, 41(1):143-149. LI J W, QU C W, PENG S J, et al. Ship detection in SAR images based on generative adversarial network and online hard examples mining[J]. Journal of Electronics and Information Technology, 2019, 41(1):143-149. (in Chinese) [19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, US: IEEE, 2016:770-778. [20] XIE S N, GIRSHICK R, DOLLR P, et al. Aggregated residual transformations for deep neural networks[C]∥Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, US: IEEE, 2017: 5987-5995. [21] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning: arXiv: 1602.07261v2[R/OL]. Ithaca, NY, US: Cornell University, (2016-08-23) [2019-06-02]. https:∥arxiv.org/abs/1602.07261. [22] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]∥Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:2018-2025.
第41卷第7期2020 年7月 兵工学报ACTA ARMAMENTARII Vol.41No.7Jul.2020
|