[1] 王世英. 二次起爆云爆战斗部的发展趋势[C]∥首届兵器工程大会论文集.重庆:中国兵工学会,重庆市科学技术协会,2017. WANG S Y. The development trend of the second detonation cloud explosion warhead[C]∥Proceedings of the 1st Ordnance Science and Engineering Conference. Chongqing: China Ordnance Society, Chongqing Science and Technology Association, 2017.(in Chinese) [2] 党福辉. 开敞空间可燃气云爆炸数值模拟研究[D]. 天津:天津理工大学, 2017. DANG F H. Numerical simulation of flammable gas cloud explosion in open space[D]. Tianjin:Tianjin University of Technology, 2017. (in Chinese) [3] 饶国宁, 周莉, 宋述忠, 等. 云爆药剂爆炸超压测试及威力评价[J]. 爆炸与冲击, 2018, 38(3): 579-585. RAO G N, ZHOU L, SONG S Z, et al. Overpressure test and power evaluation of cloud explosives explosion[J]. Explosion and Shock, 2018, 38 (3): 579-585. (in Chinese) [4] 王晔, 白春华, 李建平. 弹壳体结构对燃料装药抛撒速率影响的数值模拟研究[J]. 兵工学报, 2017, 38(1): 43-49. WANG Y, BAI C H, LI J P.Numerical simulation of the effect of shell structure on discharge rate of fuel charge[J].Acta Armamentarii, 2017,38(1): 43-49.(in Chinese) [5] 郭明儒, 娄文忠, 金鑫, 等. 燃料空气炸药固体燃料浓度动态分布试验研究[J]. 兵工学报, 2016, 37(2): 226-231. GUO M R, LOU W Z, JIN X, et al. Experimental study on dynamic distribution of solid fuel concentration in fuel air explosives[J].Acta Armamentarii, 2016, 37(2): 226-231. (in Chinese) [6] 陈嘉琛, 张奇, 马秋菊, 等. 固体与液体混合燃料抛撒过程数值模拟[J]. 兵工学报, 2014, 35(7): 972-976. CHEN J C, ZHANG Q, MA Q J, et al. Numerical simulation of solid and liquid mixed fuel dispersion process[J].Acta Armamentarii, 2014, 35(7): 972-976. (in Chinese) [7] 刘焜, 余永刚, 赵娜. 某空气雾化旋流喷嘴在受限空间内雾化特性的实验研究[J]. 兵工学报, 2015, 36(10): 1882-1887. LIU K, YU Y G, ZHAO N. Experimental study on atomization characteristics of an air atomizing swirl nozzle in a confined space[J]. Acta Armamentarii, 2015, 36(10): 1882-1887. (in Chinese) [8] 赵鹏, 李国岫, 张涛, 等. 基于流体体积方法的燃油液滴蒸发过程数值模拟研究[J]. 兵工学报, 2013, 34(11): 1359-1365. ZHAO P, LI G X, ZHANG T, et al. Numerical simulation of fuel droplet evaporation process based on fluid volume method [J]. Acta Armamentarii, 2013, 34(11): 1359-1365. (in Chinese) [9] LI X, WANG W W, ZHANG P, et al. Interactions between gas-liquid mass transfer and bubble behaviours[J]. Royal Society Open Science, 2019, 6(5): 190136.
[10] GUO R W, FU T T, ZHU C Y, et al. Hydrodynamics and mass transfer of gas-liquid flow in a tree-shaped parallel microchannel with T-type bifurcations[J]. Chemical Engineering Journal, 2019, 373: 1203-1211. [11] TREYBAL R E. Mass transfer operation[M]. New York, NY, US: McGraw-Hill, 1968:89-94. [12] MACKAY D, MATSUGU R S. Evaporation rates of liquid hydrocarbon spills on land and water[J]. The Canadian Journal of Chemical Engineering, 1973, 51(4):434-439. [13] SUTTON G. Micrometeorology[M]. New York,NY,US: McGraw-Hill, 1953:121-124. [14] DAVID R L. CRC Handbook of chemistry and physics[M]. 87th ed. Boca Raton, FL, US: CRC Press,2005. [15] DALTON J. Experimental essays on the constitution of mixed gases: on the force of steam or vapor from water or other liquids in different temperatures, both in a Torricelli vacuum and in air; on evaporation; and on expansion of gases by heat[J]. Memoirs of the Literary and Philosophical Society of Manchester, 1802, 5: 536-602. [16] MENG X Y, ZHENG P J, WU J T, et al. Density and viscosity measurements of diethyl ether from 243 to 373 K and up to 20 MPa[J]. Fluid Phase Equilibria, 2008, 271(1):1-5. [17] ANSYS Fluent 14.0 UDF manual [EB/OL]. https:∥www.ansys.com/.2011-11/2019-04-11. [18] 朱红钧. FLUENT 15.0流场分析实战指南[M]. 北京:人民邮电出版社, 2015. ZHU H J. FLUENT 15.0 flow field analysis practical guide[M]. Beijing: Posts & Telecom Press, 2015. (in Chinese)
第41卷第6期2020 年6月 兵工学报ACTA ARMAMENTARII Vol.41No.6Jun.2020
|