[1] 佚名. 美帝民兵导弹第一级和第三级固体发动机性能数据[J]. 固体火箭技术, 1978, 1(试刊): 1-6. Anonymity. Performance data of the first and third-stage solid rockets of American Minuteman missile[J]. Journal of Solid Rocket Technology, 1978, 1(Tentative Issue): 1-6.(in Chinese) [2] XING X L, ZHAO S X, WANG Z Y, et al. Discussions on thermobaric explosives (TBXs)[J]. Propellants, Explosives, Pyrotechnics, 2014, 39(1):14-17. [3] TRKER L. Thermobaric and enhanced blast explosives (TBX and EBX)[J]. Defence Technology, 2016, 12(6): 423-445. [4] 卢勇, 王伯良, 何中其,等. 温压炸药爆炸能量输出的实验研究[J]. 含能材料, 2014, 22 (5): 684-687. LU Y, WANG B L, HE Z Q, et al. Experimental research on energy output of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2014, 22(5): 684-687.(in Chinese)
[5] 赵新颖, 王伯良, 李席. 温压炸药在野外近地空爆中的冲击波规律[J]. 爆炸与冲击, 2016, 36(1): 38-42. ZHAO X Y, WANG B L, LI X. Shockwave characteristics of thermobaric explosive in free-field explosion[J]. Explosion and Shock Waves, 2016, 36(1): 38-42.(in Chinese)
[6] 王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420. WANG X F, FENG X J. Discussion of formulation design principle of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2016, 24(5): 418-420.(in Chinese)
[7] 黄菊, 王伯良, 仲倩,等. 灰色关联分析在温压炸药配方设计中的应用[J]. 含能材料, 2012, 20(2): 146-150. HUANG J, WANG B L, ZHONG Q, et al. Application of grey correlation analysis in the formulation design of thermobaric explosive[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 146-150.(in Chinese) [8] 曾亮, 焦清介, 任慧,等. 纳米铝粉粒径对活性量及氧化层厚度的影响[J]. 火炸药学报, 2011, 34(4): 26-29. ZENG L, JIAO Q J, REN H, et al. Effect of particle size of nano-aluminum powder on oxide film thickness and active aluminum content[J]. Chinese Journal of Explosives & Propellants, 2011, 34(4): 26-29.(in Chinese) [9] 金朋刚, 郭炜, 王建灵,等. 不同粒度铝粉在HMX基炸药中的能量释放特性[J]. 含能材料, 2015, 23(10): 989-993. JIN P G, GUO W, WANG J L, et al. Energy releasing characteristics of aluminum powder in HMX-based explosives[J]. Chinese Journal of Energetic Materials, 2015, 23(10): 989-993.(in Chinese) [10] 陈朗, 冯长根, 赵玉华,等. 含铝炸药爆轰数值模拟研究[J]. 北京理工大学学报, 2001, 21(4):415-419. CHEN L, FENG C G, ZHAO Y H, et al. Numerical simulations of the detonation of aluminized explosives[J]. Transactions of Beijing Institute of Technology, 2001, 21(4):415-419.(in Chinese) [11] 李媛媛, 王晓峰, 牛余雷,等. 环境氧含量对含铝炸药爆热的影响[J]. 火炸药学报, 2014, 37(2):49-52. LI Y Y, WANG X F, NIU Y L, et al. Effects of environment oxygen content on heat of detonation of aluminized explosive[J] Chinese Journal of Explosives & Propellants, 2014, 37(2):49-52.(in Chinese) [12] 任新联, 王辉, 徐司雨,等. 铝粉粒度对RDX基含铝炸药水中爆炸近场特性的影响[J]. 爆破器材, 2015, 44(6):29-33. REN X L, WANG H, XU S Y, et al. The effect of aluminum particle size on the characteristic of RDX based aluminized explosives underwater close-field explosion[J]. Explosive Materials, 2015, 44(6):29-33.(in Chinese) [13] 韩勇, 韩敦信, 卢校军,等. 含铝炸药爆压及能量释放过程的研究[J]. 含能材料, 2003, 11(4):191-193. HAN Y, HAN D X,LU X J, et al. Study on the curing of EMCDB propellant shaped by granule-casting process[J]. Chinese Journal of Energetic Materials, 2003, 11(4):191-193.(in Chinese) [14] 金朋刚, 郭炜, 任松涛,等. TNT密闭环境中能量释放特性研究[J]. 爆破器材, 2014, 43(2):10-14. JIN P G, GUO W, REN S T, et al. Research on TNT energy release characteristics in enclosed condition[J]. Explosive Materials, 2014, 43(2):10-14.(in Chinese)
[15] TRZCISKI W A, MAIZ L. Thermobaric and enhanced blast explosives-properties and testing methods[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 632-644. [16] 高旭东, 郭敏, 孙韬, 等. 炮射温压弹对人员目标的毁伤效能研究[J]. 弹箭与制导学报, 2011, 31(3):123-125. GAO X D, GUO M, SUN T, et al. The damage efficiency research on cannon thermobaric ammunition to personnel target[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(3):123-125.(in Chinese) [17] 惠君明, 陈天云. 炸药爆炸理论[M]. 南京:江苏科学技术出版社, 1995. HUI J M, CHEN T Y. Theory of explosive detonation[M]. Nanjing: Jiangsu Science and Technology Press, 1995.
[18] ZHAO Q, NIE J X, ZHANG W, et al. Effect of the Al/O ratio on the Al reaction of aluminized RDX-based explosives[J]. Chinese Physics B, 2017, 26(5): 054502. [19] TANGUAY V, GOROSHIN S, HIGGINS A J, et al. Aluminum particle combustion in high-speed detonation products[J]. Combustion Science & Technology, 2009, 181(4):670-693. [20] GILEV S D, ANISICHKIN V F. Interaction of aluminum with detonation products[J]. Combustion Explosion & Shock Waves, 2006, 42(1):107-115. [21] 裴明敬, 田朝阳, 胡华权, 等. 铝粉在温压炸药爆炸过程中的响应分析[J]. 火炸药学报, 2013, 36(4):7-12. PEI M J, TIAN Z Y, HU H Q, et al. Response analysis of aluminum in the process of thermobaric explosive detonation[J]. Chinese Journal of Explosives & Propellants, 2013, 36(4):7-12.(in Chinese) [22] 沈飞, 王辉, 徐司雨. 微/纳米粒度级配对炸药爆轰波阵面Dn(κ)关系的影响[J]. 火炸药学报, 2018, 41(1): 61-65. SHEN F, WANG H, XU S Y. Influence of micro-/nano-scaled particle gradation on the Dn(κ) relation of detonation wave front[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 61-65.(in Chinese) [23] 辛春亮, 徐更光, 刘科种,等. 含铝炸药Miller能量释放模型的应用[J]. 含能材料, 2008, 16(4):436-440. XIN C L, XU G G, LIU K Z, et al. Application of miller energy release model for aluminized explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(4):436-440.(in Chinese)
[24] 卢红琴, 刘伟庆. 空中爆炸冲击波的数值模拟研究[J]. 武汉理工大学学报, 2009,31(19):105-108. LU H Q, LIU W Q. Research on numerical simulation of blast wave in air[J]. Journal of Wuhan University of Technology, 2009,31(19):105-108.
第40卷第6期 2019 年6月兵工学报ACTA ARMAMENTARIIVol.40No.6Jun.2019
|