欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2018, Vol. 39 ›› Issue (12): 2363-2370.doi: 10.3969/j.issn.1000-1093.2018.12.010

• 论文 • 上一篇    下一篇

沿飞行弹道的扰动引力逼近方法

周欢1, 丁智坚2, 郑伟3   

  1. (1.中国工程物理研究院 总体工程研究所, 四川 绵阳 621999; 2.中国空气动力研究与发展中心, 四川 绵阳 621000;3.国防科技大学 航天科学与工程学院, 湖南 长沙 410073)
  • 收稿日期:2018-01-09 修回日期:2018-01-09 上线日期:2019-01-31
  • 作者简介:周欢(1984—), 女, 副研究员。 E-mail: jocelynzhouhuan@163.com
  • 基金资助:
    中国工程物理研究院院长基金项目(YZJJLX2017005)

An Approximation Algorithm of Gravity Anomaly along Flight Trajectory

ZHOU Huan1, DING Zhi-jian2, ZHENG Wei3   

  1. (1.Institute of System Engineering, China Academy of Engineering Physics, Mianyang 621999,Sichuan, China;2.China Aerodynamics Research and Development Center, Mianyang 621000,Sichuan, China;3.College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073,Hunan, China)
  • Received:2018-01-09 Revised:2018-01-09 Online:2019-01-31

摘要: 为实现导弹飞行过程中的扰动引力补偿,提出了一种基于网函数逼近理论的扰动引力模型构建和快速赋值方法。推导了该方法的赋值误差,分析了影响赋值精度的主要因素,计算了该方法应用于不同射程、不同射向及不同区域弹道中的扰动引力重构结果以及由赋值误差产生的落点偏差。结果表明,对于射程为12 000 km的弹道,当存储量约为1 000个数据时,即可将赋值误差及其引起的落点偏差控制在10-2 mgal量级和8 m以内,全程弹道生成时间远小于其他方法。该方法能够实现沿任意飞行弹道的扰动引力快速赋值,其赋值精度、计算速度和存储量均满足弹道计算要求。

关键词: 弹道导弹, 扰动引力, 快速赋值, 网函数, 落点偏差

Abstract: An approximation algorithm of gravity anomaly along flight trajectory based on the net function theory is proposed. The factors that affect the approximation precision are analyzed, and the approximated error is deduced. The impact point errors due to approximated errors for trajectories with different ranges, azimuth angles and launching points are calculated. The results show that an average approximated error and a consequent ballistic impact point error are controlled wthin about 10-2 mgal and 8m, respectively, when memory space is about 1 000 data for a 12 000 km-range trajectory. The modest memory requirement and vastly decreased computational time allow the proposed method to apply to onboard computations of gravity anomaly along any trajectory. Key

Key words: ballisticmissile, gravityanomaly, fastapproximation, netfunction, impactpointerror

中图分类号: