欢迎访问《兵工学报》官方网站,今天是

兵工学报

• •    下一篇

基于气动力加速度估计的高超声速滑翔飞行器智能轨迹预测

余明骏1,2,张佳梁2,3,沈海东1,2*(),刘燕斌1,2,陈金宝1,2   

  1. (1. 南京航空航天大学 宇航空间机构全国重点实验室, 江苏 南京 211106; 2. 南京航空航天大学 航天学院, 江苏 南京 211106; 3. 上海机电工程研究所, 上海 201109)
  • 收稿日期:2025-01-09 修回日期:2025-03-13
  • 通讯作者: *邮箱:shenhaidong@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金项目(52402475、52272369);中国航天科技集团有限公司第八研究院产学研合作基金项目(SAST2023-007);中央高校基本科研业务费专项项目(NS2024053)

Intelligent Hypersonic Glider Vehicle Trajectory Prediction Based on Aerodynamic Acceleration Estimation

YU Mingjun1,2, ZHANG Jialiang2,3, SHEN Haidong1,2*(), LIU Yanbin1,2, CHEN Jinbao1,2   

  1. (1. National Key Laboratory of Aerospace Mechanism, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China; 2. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, Jiangsu, China; 3. Shanghai Electro - Mechanical Engineering Institute, Shanghai 201109, China)
  • Received:2025-01-09 Revised:2025-03-13

摘要: 临近空间高超声速滑翔飞行器(Hypersonic Gliding Vehicle,HGV)具有高速、高机动特性以及超强的突防能力,对现有防御系统造成严重威胁。针对临近空间高机动目标拦截任务中跟踪预测难的问题,提出一种基于气动力加速度估计的HGV智能轨迹预测方法。根据HGV目标运动模型,分析其机动模式和气动力变化规律,选定气动升力加速度、气动阻力加速度和倾侧角控制量3个参数作为轨迹预测参数,替代目标运动模型中的未知项。建立基于气动加速度估计的动力学跟踪模型,利用雷达量测数据和无迹卡尔曼滤波实现预测参数的实时跟踪估计,并以此为输入构建长短时记忆网络(Long Short-Term Memory,LSTM)训练模型,对预测参数的变化规律与时序关系进行在线学习。利用训练完备的LSTM预测网络迭代预测目标未来时刻的气动加速度,结合运动方程数值积分外推,实现目标轨迹在线预测。数值仿真结果表明,所提方法能有效预测非合作HGV目标轨迹,预测精度高、稳定性好。

关键词: 高超声速滑翔飞行器, 气动加速度估计, 跟踪滤波, 长短时记忆网络, 轨迹预测

Abstract: The near-space hypersonic gliding vehicle (HGV) poses a significant threat to modern defense systems due to its ultra-high velocity, extreme maneuverability, and superior penetration capabilities. To address the challenges in tracking and predicting HGV trajectories for interception, this study introduces an intelligent trajectory prediction method based on aerodynamic acceleration estimation. By systematically analyzing the HGV motion model, maneuver patterns, and aerodynamic variation laws, three critical parameters—aerodynamic lift acceleration, drag acceleration, and bank angle control—are identified as key trajectory prediction variables, replacing unknown terms in the HGV motion model. A dynamics tracking model incorporating aerodynamic acceleration estimation is developed, utilizing radar measurement data and the Unscented Kalman Filter (UKF) for real-time tracking and estimation of these parameters. These estimated parameters are then used as inputs to train a Long Short-Term Memory (LSTM) network, which captures temporal relationships and variation patterns in the prediction parameters. The trained LSTM network iteratively forecasts future aerodynamic accelerations, which are integrated with numerical solutions of motion equations to extrapolate HGV trajectories. Numerical simulations confirm that the proposed method achieves high prediction accuracy and robust stability in predicting trajectories of non-cooperative HGVs.

Key words: hypersonic glide vehicle, aerodynamic acceleration estimation, tracking filter, LSTM network, trajectory prediction

中图分类号: