欢迎访问《兵工学报》官方网站,今天是

兵工学报 ›› 2024, Vol. 45 ›› Issue (11): 4020-4030.doi: 10.12382/bgxb.2023.0992

• • 上一篇    下一篇

基于显著性区域检测的多尺度图像盲复原算法

赵小强1,2,3,*(), 王涛1, 宋昭漾1,2,3, 蒋红梅1,2,3   

  1. 1 兰州理工大学 电气工程与信息工程学院, 甘肃 兰州 730050
    2 甘肃省工业过程先进控制重点实验室, 甘肃 兰州 730050
    3 国家级电气与控制工程实验教学中心, 甘肃 兰州 730050
  • 收稿日期:2023-09-28 上线日期:2024-01-20
  • 通讯作者:
  • 基金资助:
    国家自然科学基金项目(62263021); 甘肃省高校产业支撑计划项目(2023CYZC-24); 甘肃省科技计划项目(24JRRA172); 甘肃省工业过程先进控制重点实验室开放基金项目(2022KX07)

Multi-scale Blind Image Restoration Algorithm Based on Salient Region Detection

ZHAO Xiaoqiang1,2,3,*(), WANG Tao1, SONG Zhaoyang1,2,3, JIANG Hongmei1,2,3   

  1. 1 School of Electrical Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, China
    2 Gansu Provincial Key Laboratory of Advanced Control for Industrial Processes, Lanzhou 730050, Gansu, China
    3 National Experimental Teaching Center of Electrical and Control Engineering, Lanzhou 730050, Gansu, China
  • Received:2023-09-28 Online:2024-01-20

摘要:

针对大多数基于先验的盲图像去模糊算法耗时较长和显著边缘结构提取不理想的问题,提出一种基于显著性区域检测的多尺度图像盲复原算法。为了复原出更加清晰的图像,采用由粗略到精细的多尺度交替迭代框架构建图像金字塔。在图像单一尺度方面,首先提取出图像中具有强边缘结构的显著性区域,并对其施加l0范数约束,提出显著映射先验;将显著性映射先验和最大后验概率相结合并引入传统图像去模糊模型中,构造出点扩散函数估算模型,利用半二次分裂算法解决模型的非凸问题;对点扩散函数进行复原时,利用点扩散函数相似度的变化量限制每个尺度中的过渡迭代;对模糊图像和最终估计的点扩散函数进行非盲解卷积,获得复原图像。实验结果表明:与现有的主流去模糊算法相比,新算法在合成数据集和真实数据集中都可以有效抑制振铃和伪影现象,得到了很好的视觉体验,且评价指标均优于对比算法,同时大大缩减了复原时间。

关键词: 多尺度图像, 显著边缘结构, 点扩散函数, 半二次分裂算法, 点扩散函数相似度

Abstract:

The blind image deblurring algorithm based on priority takes a long time for image deblurring,and has aunidealsalient edge structure extraction capablity. A multi-scale blind image restoration algorithm based on salient region detection is proposed.In order to restore more clear images, an image pyramid is constructed by using a rough-to-finemulti-scale iterative framework. In the aspect of image single scale, asalient region with strong edge structure is extracted first, and the l0 norm constraint is applied to it. Asalient mapping prior is proposed. Then the salient mapping prior and the maximum posteriori probability are introduced into the traditional image deblurring model to construct a point spread function estimation model, and the semi-quadratic splitting algorithm is usedto solve the non-convex problem of the model. When restoring the point spread function, the change of point spread function similarity is used to limit the transition iteration in each scale. Finally, the fuzzy image and the final estimated point spread function are deconvolved to obtain the restored image. The experimental results show that, compared with the existing mainstream deblurring algorithms, the proposed algorithm can effectively suppress the ringing and artifact phenomena in both synthetic and real data setsand get a good visual experience, the evaluation indexes are better than those of the comparison algorithm, and the image restoration time is greatly reduced.

Key words: multi-scaleimage, salient edge structure, point spread function, semi-quadratic splitting algorithm, point spread function similarity

中图分类号: