
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250197-.doi: 10.12382/bgxb.2025.0197
Previous Articles Next Articles
WU Danfeng1,2, CHEN Tongzhou3, KUANG Minchi4,*(
), SONG Chunsen5, ZHOU Fenfen1,2, ZHANG Xueyan1,2
Received:2025-03-20
Online:2025-11-27
Contact:
KUANG Minchi
CLC Number:
WU Danfeng, CHEN Tongzhou, KUANG Minchi, SONG Chunsen, ZHOU Fenfen, ZHANG Xueyan. Negative Obstacle Detection for Ground Unmanned Vehicles Using Multiple Types of LiDAR in Unstructured Environments[J]. Acta Armamentarii, 2025, 46(11): 250197-.
Add to citation manager EndNote|Ris|BibTeX
| 聚类 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| 无聚类 | | | |
| 有聚类 | | | |
Table 1 Negative obstacle clustering
| 聚类 | 场景1 | 场景2 | 场景3 |
|---|---|---|---|
| 无聚类 | | | |
| 有聚类 | | | |
| 栅格类型 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 固定分辨率 极坐标栅格 | | | |
| 直角坐标栅格 | | | |
| 自适应分辨率 极坐标栅格 | | | |
Table 2 Experimental results on validation of adaptive resolution polar grid
| 栅格类型 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 固定分辨率 极坐标栅格 | | | |
| 直角坐标栅格 | | | |
| 自适应分辨率 极坐标栅格 | | | |
| 栅格类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 直角坐标栅格 | IoU | 0.71 | 0.69 | 0.51 |
| 固定分辨率极坐标栅格 | IoU | 0.79 | 0.68 | 0.55 |
| 自适应分辨率极坐标栅格 | IoU | 0.82 | 0.71 | 0.58 |
Table 3 Experimental results on validation of adaptive resolution polar grid
| 栅格类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 直角坐标栅格 | IoU | 0.71 | 0.69 | 0.51 |
| 固定分辨率极坐标栅格 | IoU | 0.79 | 0.68 | 0.55 |
| 自适应分辨率极坐标栅格 | IoU | 0.82 | 0.71 | 0.58 |
| 特征类型 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 融合特征 | | | |
| 去除密集空洞特征 | | | |
| 去除高度差特征 | | | |
| 去除最低高度特征 | | | |
Table 4 Experimental results on the effectiveness of negative obstacle grid feature descriptor
| 特征类型 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 融合特征 | | | |
| 去除密集空洞特征 | | | |
| 去除高度差特征 | | | |
| 去除最低高度特征 | | | |
| 特征类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 去除密集空洞特征 | FPR | 0.16 | 0.11 | 0.17 |
| 去除高度差特征 | FPR | 0.15 | 0.16 | 0.12 |
| 去除最低高度特征 | FPR | 0.09 | 0.13 | 0.20 |
| 融合特征 | FPR | 0.07 | 0.11 | 0.10 |
Table 5 Experimental results on the effectiveness of negative obstacle grid feature descriptor
| 特征类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 去除密集空洞特征 | FPR | 0.16 | 0.11 | 0.17 |
| 去除高度差特征 | FPR | 0.15 | 0.16 | 0.12 |
| 去除最低高度特征 | FPR | 0.09 | 0.13 | 0.20 |
| 融合特征 | FPR | 0.07 | 0.11 | 0.10 |
| 策略 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 多帧融合 | | | |
| 单帧检测 | | | |
Table 6 Experimental results on the effectiveness of multi-frame data fusion
| 策略 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|
| 多帧融合 | | | |
| 单帧检测 | | | |
| 检测类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 单帧检测 | IoU | 0.70 | 0.63 | 0.44 |
| 多帧融合 | IoU | 0.79 | 0.70 | 0.55 |
Table 7 Experimental results on the effectiveness of multi-frame data fusion
| 检测类型 | 指标 | 5~10m | 10~15m | 15~20m |
|---|---|---|---|---|
| 单帧检测 | IoU | 0.70 | 0.63 | 0.44 |
| 多帧融合 | IoU | 0.79 | 0.70 | 0.55 |
| 场景 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 场景1 | | | |
| 场景2 | | | |
| 场景3 | | | |
Table 8 Comparative experimental results of hybrid solid-state LiDAR
| 场景 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 场景1 | | | |
| 场景2 | | | |
| 场景3 | | | |
| 场景 | 指标 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|---|
| 场景1 | IoU | 0.80 | 0.76 | 0.71 |
| 场景2 | IoU | 0.79 | 0.78 | 0.75 |
| 场景3 | IoU | 0.74 | 0.72 | 0.71 |
Table 9 Comparative experimental results of hybrid solid-state LiDAR
| 场景 | 指标 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|---|
| 场景1 | IoU | 0.80 | 0.76 | 0.71 |
| 场景2 | IoU | 0.79 | 0.78 | 0.75 |
| 场景3 | IoU | 0.74 | 0.72 | 0.71 |
| 计算对象及 平均耗时 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 计算对象 | 栅格 | 三维点云 | 点云对 |
| 平均耗时/ms | 6 | 9 |
Table 10 Comparison results of hybrid solid-state LiDARs performances
| 计算对象及 平均耗时 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 计算对象 | 栅格 | 三维点云 | 点云对 |
| 平均耗时/ms | 6 | 9 |
| 场景 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 场景1 | | | |
| 场景2 | | | |
Table 11 Experimental results of mechanical LiDARs
| 场景 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 场景1 | | | |
| 场景2 | | | |
| 场景 | 指标 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|---|
| 场景1 | IoU | 0.83 | 0.73 | 0.80 |
| 场景2 | IoU | 0.84 | 0.69 | 0.85 |
Table 12 Experimental results of mechanical LiDAR
| 场景 | 指标 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|---|
| 场景1 | IoU | 0.83 | 0.73 | 0.80 |
| 场景2 | IoU | 0.84 | 0.69 | 0.85 |
| 计算对象及 平均耗时 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 计算对象 | 栅格 | 三维点云 | 点云对 |
| 平均耗时/ms | 4 | 6 |
Table 13 Performance comparison of mechanical LiDARs
| 计算对象及 平均耗时 | 本文方法 | 文献[ | 文献[ |
|---|---|---|---|
| 计算对象 | 栅格 | 三维点云 | 点云对 |
| 平均耗时/ms | 4 | 6 |
| [24] |
|
| [25] |
doi: 10.1109/LRA.2024.3414256 URL |
| [1] |
|
| [2] |
周梦如, 陈慧岩, 熊光明, 等. 越野环境下无人履带平台的道路可通行性分析[J]. 兵工学报, 2022, 43(10):2485-2496.
doi: 10.12382/bgxb.2021.0824 |
|
doi: 10.12382/bgxb.2021.0824 |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
doi: 10.3390/app15042076 URL |
| [8] |
|
| [9] |
doi: 10.3390/s22228878 URL |
| [10] |
doi: 10.3390/su15010120 URL |
| [11] |
doi: 10.3390/electronics12040826 URL |
| [12] |
|
| [13] |
doi: 10.1109/TITS.2024.3431671 URL |
| [14] |
|
| [15] |
|
| [16] |
刘家银, 唐振民, 王安东, 等. 基于多激光雷达与组合特征的非结构化环境负障碍物检测[J]. 机器人, 2017, 39(5):638-651.
doi: 10.13973/j.cnki.robot.2017.0638 |
|
doi: 10.13973/j.cnki.robot.2017.0638 |
|
| [17] |
|
| [18] |
|
| [19] |
doi: 10.1002/rob.2016.33.issue-5 URL |
| [20] |
|
| [21] |
|
| [22] |
doi: 10.3390/s24247929 URL |
| [23] |
doi: 10.3390/s20185048 URL |
| [1] | WANG Weihan, GAO Mingze, SHI Xiaolong, HU Shiyuan, WU Yanjiang, CHEN Huimin. Modeling and Verification of Dynamic Imaging of UAV-borne Line-array LiDAR [J]. Acta Armamentarii, 2025, 46(6): 240836-. |
| [2] | FENG Yu, XIE Guangda, LIU Long, SU Yunquan, LIU Junwei, GENG Yandong, MIAO Lie. LiDAR Object Detection Method Based on Point Cloud Mask Pre-training and Gaussian Localization Uncertainty Estimation [J]. Acta Armamentarii, 2025, 46(6): 240788-. |
| [3] | JIN Zhe, JIANG Chaoyang. Degeneration Correction of LiDAR SLAM for UGV Leapfrog Cooperation [J]. Acta Armamentarii, 2025, 46(3): 240161-. |
| [4] | XIAO Yang, SU Bo, JI Chao, YANG Dezhen, ZHOU Tong. System Safety Analysis of Unmanned Ground Vehicles Based on STPA Method and Bow-Tie Model [J]. Acta Armamentarii, 2024, 45(S2): 153-161. |
| [5] | JI Peng, GUO Minghao. Local Path Planning for Unmanned Ground Vehicles Based on Improved Artificial Potential Field Method in Frenet Coordinate System [J]. Acta Armamentarii, 2024, 45(7): 2097-2109. |
| [6] | JIA Yifei, JIANG Chaoyang. Dynamic Reconfigurable Adaptive UGV Formation System [J]. Acta Armamentarii, 2024, 45(10): 3654-3673. |
| [7] | FANG Qiuyu, ZHANG Yunlin, MA Zhuangzhuang, SHAO Jinliang. Control Barrier Functions-based Trajectory Planning for Unmanned Ground Vehicles in Unknown Environment [J]. Acta Armamentarii, 2023, 44(S2): 90-102. |
| [8] | ZHAO Xijun, CUI Xing, LI Zhaodong, WANG Yiquan, YANG Yu. Adaptive Inter-vechile Distance Control for Unmanned Ground Vehicle Convoy [J]. Acta Armamentarii, 2023, 44(S2): 44-51. |
| [9] | LI Zhaodong, ZHAO Xijun, YANG Tingting, QI Xiaolong, ZHOU Changyi, ZHANG Liming. Key Technologies and Application Prospects for High-definition Map in Off-road Environments [J]. Acta Armamentarii, 2023, 44(S2): 1-11. |
| [10] | LIU Bin, LI Xuemei. A Self-adaptive Dual Radius Filtering Algorithm Based on LiDAR Point Cloud [J]. Acta Armamentarii, 2023, 44(9): 2768-2777. |
| [11] | HUO Jian, CHEN Huimin, MA Yunfei, GUO Pengyu, YANG Xu, MENG Xiangsheng. Vehicle Target Recognition Algorithm Based on MEMS LiDAR [J]. Acta Armamentarii, 2023, 44(4): 940-948. |
| [12] | XIONG Guangming, YU Quanfu, HU Xiuzhong, ZHOU Zijie, XU Jiahui. A Motion Planner for Unmanned Tracked Vehicles in Multi-storey Buildings Considering the Characteristics of Vehicles [J]. Acta Armamentarii, 2023, 44(3): 841-850. |
| [13] | PAN Bo, LI Shengfei, WANG Yang, TAN Senqi, ZHANG Naisi, LUO Tian, CUI Xing. Integrated Control Method of Multi-axle Distributed Driving Unmanned Ground Vehicle in Handling Limit [J]. Acta Armamentarii, 2023, 44(11): 3279-3294. |
| [14] | GUAN Haijie, WANG Boyang, WANG Xurui, LIU Hai’ou, CHEN Huiyan. A Review on the Development of Military Unmanned Ground System with Mission Payload [J]. Acta Armamentarii, 2023, 44(11): 3333-3344. |
| [15] | GONG Shixiong, WANG Xu, KONG Guojie, GONG Jianwei. Methods for Multi-Vehicle Cooperative Object Tracking [J]. Acta Armamentarii, 2022, 43(10): 2429-2442. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||