
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250199-.doi: 10.12382/bgxb.2025.0199
Previous Articles Next Articles
SHI Zhaofeng1, SONG Shengtao1,2,*(
), NING Fengping1, ZHANG Lei1, DENG Lianzheng1, GUO Wenxiao3
Received:2025-03-20
Online:2025-11-27
Contact:
SONG Shengtao
CLC Number:
SHI Zhaofeng, SONG Shengtao, NING Fengping, ZHANG Lei, DENG Lianzheng, GUO Wenxiao. Kinematics and Performance Analysis of a Novel Bipedal Mobile Robot[J]. Acta Armamentarii, 2025, 46(11): 250199-.
Add to citation manager EndNote|Ris|BibTeX
| 足式移动机器人 | 驱动数量 | 特点 |
|---|---|---|
| WL-16RIV[ | 12 | 6自由度,双并联机构,出色的行走与负载能力,应用场景丰富 |
| 串并混联腿机构双足机器人[ | 12 | 6自由度,双并联机构,运动灵活,工作范围大 |
| MPLBR[ | 6 | 3自由度,双并联机构,可实现多种运动模式 |
| 基于广义并联机构的仿人腿双足机器人[ | 12 | 6自由度,双并联机构,所有驱动放置在定平台上,具有高刚度优点 |
| 四足/双足可重构并联腿移动机器人[ | 24 | 6自由度,双并联机构,通过可重构,可满足多种场景需求 |
| 三平台双足机器人[ | 12 | 6自由度,双并联机构,承载力强 |
| 三平台六足机器人[ | 12 | 3自由度,双并联机构,稳定性高,适用于多种复杂地形 |
| 双平台双足移动机器人 | 6 | 4自由度,单串并混联机构,通过动/静平台的切换,实现机器人运动 |
Table 1 Characteristics of current legged robots
| 足式移动机器人 | 驱动数量 | 特点 |
|---|---|---|
| WL-16RIV[ | 12 | 6自由度,双并联机构,出色的行走与负载能力,应用场景丰富 |
| 串并混联腿机构双足机器人[ | 12 | 6自由度,双并联机构,运动灵活,工作范围大 |
| MPLBR[ | 6 | 3自由度,双并联机构,可实现多种运动模式 |
| 基于广义并联机构的仿人腿双足机器人[ | 12 | 6自由度,双并联机构,所有驱动放置在定平台上,具有高刚度优点 |
| 四足/双足可重构并联腿移动机器人[ | 24 | 6自由度,双并联机构,通过可重构,可满足多种场景需求 |
| 三平台双足机器人[ | 12 | 6自由度,双并联机构,承载力强 |
| 三平台六足机器人[ | 12 | 3自由度,双并联机构,稳定性高,适用于多种复杂地形 |
| 双平台双足移动机器人 | 6 | 4自由度,单串并混联机构,通过动/静平台的切换,实现机器人运动 |
| 驱动的 输入关节 | 锁定的 输入关节 | 平台Ⅱ-P链Ⅰ-足Ⅰ的约束力螺旋系 |
|---|---|---|
| UPU支链Ⅰ | UPU支链 Ⅱ、Ⅲ、Ⅳ | U1= |
| UPU支链Ⅱ | UPU支链 Ⅰ、Ⅲ、Ⅳ | U2=[ |
| UPU支链Ⅲ | UPU支链 Ⅰ、Ⅱ、Ⅳ | U3=[ |
| UPU支链Ⅳ | UPU支链 Ⅰ、Ⅱ、Ⅲ | U4=[ |
Table 2 Foot I increased wrench screw
| 驱动的 输入关节 | 锁定的 输入关节 | 平台Ⅱ-P链Ⅰ-足Ⅰ的约束力螺旋系 |
|---|---|---|
| UPU支链Ⅰ | UPU支链 Ⅱ、Ⅲ、Ⅳ | U1= |
| UPU支链Ⅱ | UPU支链 Ⅰ、Ⅲ、Ⅳ | U2=[ |
| UPU支链Ⅲ | UPU支链 Ⅰ、Ⅱ、Ⅳ | U3=[ |
| UPU支链Ⅳ | UPU支链 Ⅰ、Ⅱ、Ⅲ | U4=[ |
| 设计变量 | 初值/mm | 优化范围/mm |
|---|---|---|
| a | 100 | [80,150] |
| b | 45 | [30,60] |
| c | 28 | [20,40] |
| d | 40 | [30,50] |
Table 3 Size parameters and optimization range
| 设计变量 | 初值/mm | 优化范围/mm |
|---|---|---|
| a | 100 | [80,150] |
| b | 45 | [30,60] |
| c | 28 | [20,40] |
| d | 40 | [30,50] |
| 参数 | 优化前 | 优化后 |
|---|---|---|
| a | 100 | 90 |
| b | 45 | 50 |
| c | 28 | 35 |
| d | 40 | 40 |
| κ1 | 0.5228 | 0.5931 |
| κ2 | 0.4720 | 0.4838 |
Table 4 Optimized results
| 参数 | 优化前 | 优化后 |
|---|---|---|
| a | 100 | 90 |
| b | 45 | 50 |
| c | 28 | 35 |
| d | 40 | 40 |
| κ1 | 0.5228 | 0.5931 |
| κ2 | 0.4720 | 0.4838 |
| [1] |
尚哲, 王挺, 徐瑶, 等. 六轮摇臂移动机器人结构设计与越障动力学研究[J]. 兵工学报, 2023, 44(11):3478-3488.
doi: 10.12382/bgxb.2022.0825 |
|
doi: 10.12382/bgxb.2022.0825 |
|
| [2] |
姜祎, 王挺, 邵沛瑶, 等. 一种轮腿复合型机器人的步态研究与越障性能分析[J]. 兵工学报, 2023, 44(1):247-259.
doi: 10.12382/bgxb.2022.0823 |
|
doi: 10.12382/bgxb.2022.0823 |
|
| [3] |
罗自荣, 徐毓泽, 陈善军, 等. 2-(U+UPS)PU+UPU平动机器人腿机构设计与力速性能分析[J]. 中国机械工程, 2024, 35(12):2193-2202.
|
|
doi: 10.3969/j.issn.1004-132X.2024.12.012 |
|
| [4] |
doi: 10.20965/jrm.2007.p0272 URL |
| [5] |
|
| [6] |
doi: 10.1109/LRA.2024.3350997 URL |
| [7] |
doi: 10.1016/j.mechmachtheory.2022.105029 URL |
| [8] |
王洪波, 齐政彦, 胡正伟, 等. 并联腿机构在四足/两足可重组步行机器人中的应用[J]. 机械工程学报, 2009, 45(8):24-30.
|
|
|
|
| [9] |
王洪波, 徐桂玲, 胡星, 等. 四足并联腿步行机器人动力学[J]. 机械工程学报, 2012, 48(23):76-82.
|
|
|
|
| [10] |
潘武星, 李瑞琴. 可重构性和解耦性轮腿式机械腿构型综合方法[J]. 兵工学报, 2024, 45(8):2658-2666.
doi: 10.12382/bgxb.2023.0398 |
|
doi: 10.12382/bgxb.2023.0398 |
|
| [11] |
doi: 10.1109/ACCESS.2024.3467278 URL |
| [12] |
樊文龙. 用于长重物协同搬运的3-UPU并联式六足机器人构型设计及运动规划[D]. 太原: 中北大学, 2023.
|
|
|
|
| [13] |
doi: 10.1016/j.mechmachtheory.2024.105904 URL |
| [14] |
doi: 10.1115/1.1469549 URL |
| [15] |
黄真, 赵永生, 赵铁石. 高等空间机构学[M]. 2版. 北京: 高等教育出版社, 2014:111-152.
|
|
|
|
| [16] |
doi: 10.1016/j.mechmachtheory.2022.105015 URL |
| [17] |
doi: 10.3390/app14051757 URL |
| [18] |
刘辛军, 于靖军, 孔宪文. 机器人机构学[M]. 北京: 机械工业出版社, 2021.
|
|
|
|
| [19] |
叶伟, 谢镇涛, 李秦川. 一种可用于微创手术的并联机构运动学分析与性能优化[J]. 机械工程学报, 2020, 56(19):103-112.
doi: 10.3901/JME.2020.19.103 |
|
doi: 10.3901/JME.2020.19.103 |
|
| [20] |
陈祥, 谢福贵, 刘辛军. 并联机构中运动/力传递功率最大值的评价[J]. 机械工程学报, 2014, 50(3):1-9.
|
|
|
|
| [21] |
刘辛军, 谢福贵, 汪劲松. 并联机器人机构学基础[M]. 北京: 高等教育出版社, 2018.
|
|
|
|
| [22] |
doi: 10.1142/S0219843604000083 URL |
| [23] |
doi: 10.1142/S0219843623500305 URL |
| [1] | WANG Zhibo, GU Jinjing, QIAN Haocheng. The Influence of Active Ventilation on Propeller Wake [J]. Acta Armamentarii, 2025, 46(9): 240905-. |
| [2] | LI Junhui, WANG Wei, WANG Yuchen, JI Yi. Unmanned Aerial Vehicle Formation Control Based on Prescribed-time Consensus Theory [J]. Acta Armamentarii, 2025, 46(8): 240863-. |
| [3] | JIA Shuxiang, YU Yonggang. Numerical Simulation of the Expansion Characteristics of Plasma Jet in Gradually Expanding Liquid-filled Chamber [J]. Acta Armamentarii, 2025, 46(4): 240034-. |
| [4] | WU Haoyang, CHEN Kaixuan, XUE Xiaochun, YU Yonggang. Numerical Simulation on Unsteady Combustion of NEPE Propellant [J]. Acta Armamentarii, 2025, 46(11): 250148-. |
| [5] | DONG Heng, HUANG Fenglei, WU Haijun, DENG Ximin, LI Meng, LIU Longlong. Penetration and Perforation Mechanism of High-speed Non-circular Projectilesa: A State-of-the-Art Review [J]. Acta Armamentarii, 2024, 45(9): 2863-3887. |
| [6] | LI Xiaodong, MENG Lei, ZHOU Ping, YAN Ying. Efficient Computational Model and Analysis of Structural Stability of Multi-layered Fiber Optic Cable Package [J]. Acta Armamentarii, 2024, 45(8): 2554-2563. |
| [7] | XU Yuntao, TAN Dalin, YANG Chao, DAI Yuting, WANG Zhenxiao, ZHOU Peng. The Influences of Forebody Parameters of Flat-nosed Projectile on Trajectory Stability and Range [J]. Acta Armamentarii, 2024, 45(6): 1933-1941. |
| [8] | WANG Wei, YANG Jing, NAN Yuxiang, LI Junhui, WANG Yuchen. Design of a Neural Network Acceleration Autopilot for Spinning Projectile Based on Adaptive Disturbance Observer [J]. Acta Armamentarii, 2024, 45(11): 3841-3855. |
| [9] | LI Yaoheng, GAI Jiangtao, ZHANG Nan, CHENG Cheng, LI Cuifen, SHUAI Zhibin, DIAO Lijun. Stability Analysis and Optimization Strategy of Electric System for Electric Tracked Vehicles [J]. Acta Armamentarii, 2024, 45(10): 3397-3414. |
| [10] | ZHANG Xuexue, XUE Zhihua, NIE Hongqi, YAN Qilong. Preparation of Energetic Burning Rate Inhibitor and Its Negative Catalytic Effect on AP Decomposition [J]. Acta Armamentarii, 2024, 45(1): 15-25. |
| [11] | CHEN Baihan, SHEN Zikai, ZOU Huihui, WANG Weiguang, WANG Kehui. Basic Evolution Characteristics of Oblique Penetration of Projectile against Hard Target [J]. Acta Armamentarii, 2023, 44(S1): 59-66. |
| [12] | CHEN Baihan, WANG Libin, ZOU Huihui, WANG Weiguang, WANG Kehui. Influence of Spin on the Penetration Effect of Projectile [J]. Acta Armamentarii, 2023, 44(S1): 117-124. |
| [13] | LI Dongyang, CHANG Sijiang, WANG Zhongyuan. Nonlinear Region of Attraction Estimation for Projectile’s Angular Motion [J]. Acta Armamentarii, 2023, 44(8): 2329-2341. |
| [14] | DU Wanshan, ZHOU Zhou, BAI Yu, ZHANG Zhilin, WANG Keilei. Study on Multibody Dynamics Modeling and Flight Dynamic Characteristics of Combined Aircraft [J]. Acta Armamentarii, 2023, 44(8): 2245-2262. |
| [15] | ZHOU Lin, NI Lei, LI Dongwei, ZHANG Xiangrong, LIU Haiqing, JIANG Tao, ZHU Yingzhong. Test Method for Anti-overload Performance of Explosives [J]. Acta Armamentarii, 2023, 44(6): 1722-1732. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||