
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250091-.doi: 10.12382/bgxb.2025.0091
Previous Articles Next Articles
QUAN Xin1, DENG Ximin2, WU Haijun1,*(
), YAN Lei3, DONG Heng1, JIANG Teng1, HUANG Fenglei1
Received:2025-02-11
Online:2025-11-27
Contact:
WU Haijun
CLC Number:
QUAN Xin, DENG Ximin, WU Haijun, YAN Lei, DONG Heng, JIANG Teng, HUANG Fenglei. Constitutive and Fracture Models of Q345E Ship Steel Considering Stress State[J]. Acta Armamentarii, 2025, 46(11): 250091-.
Add to citation manager EndNote|Ris|BibTeX
| 试样 类型 | 加载速度/(mm·min-1) | 试样 类型 | 加载速度/(mm·min-1) |
|---|---|---|---|
| C | 0.24/2.4/24.0 | TS30 | 0.3 |
| TS60 | 0.4 | ||
| CS15 | 0.24 | T | 1.2 |
| CS30 | 0.24 | R2 | 0.3 |
| TS0 | 0.24 | R6 | 0.4 |
Table 1 Quasi-static experimental loading speed
| 试样 类型 | 加载速度/(mm·min-1) | 试样 类型 | 加载速度/(mm·min-1) |
|---|---|---|---|
| C | 0.24/2.4/24.0 | TS30 | 0.3 |
| TS60 | 0.4 | ||
| CS15 | 0.24 | T | 1.2 |
| CS30 | 0.24 | R2 | 0.3 |
| TS0 | 0.24 | R6 | 0.4 |
| 编号 | 应变率/ s-1 | 屈服应力/ MPa | 编号 | 应变率/ s-1 | 屈服应力/ MPa |
|---|---|---|---|---|---|
| 1 | 8.58×10-4 | 405.1 | 6 | 2000 | 698.1 |
| 2 | 10-3 | 419.3 | 7 | 4000 | 771.6 |
| 3 | 10-2 | 424.6 | 8 | 4000 | 778.4 |
| 4 | 0.1 | 430.9 | 9 | 6000 | 815.0 |
| 5 | 2 000 | 695.0 | 10 | 6000 | 819.2 |
Table 2 Yield stress of Q345E steel under different strain rates
| 编号 | 应变率/ s-1 | 屈服应力/ MPa | 编号 | 应变率/ s-1 | 屈服应力/ MPa |
|---|---|---|---|---|---|
| 1 | 8.58×10-4 | 405.1 | 6 | 2000 | 698.1 |
| 2 | 10-3 | 419.3 | 7 | 4000 | 771.6 |
| 3 | 10-2 | 424.6 | 8 | 4000 | 778.4 |
| 4 | 0.1 | 430.9 | 9 | 6000 | 815.0 |
| 5 | 2 000 | 695.0 | 10 | 6000 | 819.2 |
| 本构模型参数 | AJC | BJC | nJC |
|---|---|---|---|
| 拟合结果 | 419.3 | 617.2 | 0.45 |
Table 3 Fitting parameters of JC constitutive model
| 本构模型参数 | AJC | BJC | nJC |
|---|---|---|---|
| 拟合结果 | 419.3 | 617.2 | 0.45 |
| 塑性应变 | CJC-CS | R2 |
|---|---|---|
| 0.07 | -0.050 | 0.899 |
| 0.10 | -0.049 | 0.870 |
| 0.13 | -0.048 | 0.894 |
Table 4 Strain rate parameter fitting of JC-CS model
| 塑性应变 | CJC-CS | R2 |
|---|---|---|
| 0.07 | -0.050 | 0.899 |
| 0.10 | -0.049 | 0.870 |
| 0.13 | -0.048 | 0.894 |
| AJC-CS/ MPa | BJC-CS/ MPa | CJC-CS | nJC-CS | CJC-CS/ s-1 | qJC-CS | |
|---|---|---|---|---|---|---|
| 419.3 | 617.2 | -0.05 | 0.45 | 6689.29 | 2.99 | 0.001 |
Table 5 JC-CS model parameters of Q345E steel
| AJC-CS/ MPa | BJC-CS/ MPa | CJC-CS | nJC-CS | CJC-CS/ s-1 | qJC-CS | |
|---|---|---|---|---|---|---|
| 419.3 | 617.2 | -0.05 | 0.45 | 6689.29 | 2.99 | 0.001 |
| a/MPa | b | c/MPa | d | k1 | k2 | k3 |
|---|---|---|---|---|---|---|
| 576.3 | 0.784 | -186.37 | -20.69 | 0.01 | 0.23 | 0.2 |
Table 6 Reference stress-strain curve parameters
| a/MPa | b | c/MPa | d | k1 | k2 | k3 |
|---|---|---|---|---|---|---|
| 576.3 | 0.784 | -186.37 | -20.69 | 0.01 | 0.23 | 0.2 |
| 试样类型 | 平均应力三轴度 | 断裂应变 |
|---|---|---|
| R2 | 0.98 | 0.42 |
| R6 | 0.71 | 0.75 |
| TS0 | 0.19 | 0.68 |
| TS30 | 0.39 | 0.98 |
| TS60 | 0.34 | 0.79 |
| T | 0.49 | 1.02 |
| CS15 | -0.09 | 0.99 |
Table 7 Mean stress triaxiality and fracture strain of Q345E
| 试样类型 | 平均应力三轴度 | 断裂应变 |
|---|---|---|
| R2 | 0.98 | 0.42 |
| R6 | 0.71 | 0.75 |
| TS0 | 0.19 | 0.68 |
| TS30 | 0.39 | 0.98 |
| TS60 | 0.34 | 0.79 |
| T | 0.49 | 1.02 |
| CS15 | -0.09 | 0.99 |
| D1 | D2 | D3 | D4 | D5 |
|---|---|---|---|---|
| -0.15 | 2.36 | -1.41 | 0 | 0 |
Table 8 Johnson Cook failure model parameters
| D1 | D2 | D3 | D4 | D5 |
|---|---|---|---|---|
| -0.15 | 2.36 | -1.41 | 0 | 0 |
| D1 | D2 | D3 | D4 | D5 | η0 |
|---|---|---|---|---|---|
| 0.622 | 15.400 | 1.716 | -2.164 | 0.729 | 0.541 |
Table 9 Parameters of Wierzbicki failure model
| D1 | D2 | D3 | D4 | D5 | η0 |
|---|---|---|---|---|---|
| 0.622 | 15.400 | 1.716 | -2.164 | 0.729 | 0.541 |
| 试样 | 平均应力三轴度 | 平均Lode角参数 | 断裂应变 |
|---|---|---|---|
| T | 0.49 | 1 | 1.02 |
| R2 | 0.98 | 1 | 0.42 |
| R6 | 0.71 | 1 | 0.75 |
| TS0 | 0.19 | 0.0517 | 0.68 |
| TS30 | 0.39 | 0.1030 | 0.98 |
| TS60 | 0.34 | 0.7010 | 0.79 |
| CS15 | -0.09 | -0.3350 | 0.99 |
Table 10 Stress state parameter in the test field
| 试样 | 平均应力三轴度 | 平均Lode角参数 | 断裂应变 |
|---|---|---|---|
| T | 0.49 | 1 | 1.02 |
| R2 | 0.98 | 1 | 0.42 |
| R6 | 0.71 | 1 | 0.75 |
| TS0 | 0.19 | 0.0517 | 0.68 |
| TS30 | 0.39 | 0.1030 | 0.98 |
| TS60 | 0.34 | 0.7010 | 0.79 |
| CS15 | -0.09 | -0.3350 | 0.99 |
| 弹体 编号 | 靶网速度/ (m·s-1) | 高速摄影测得速度/(m·s-1) | ||||
|---|---|---|---|---|---|---|
| 靶1前 | 相对 误差/% | 靶1后 | 靶2后 | 靶3后 | ||
| C-1 | 951 | 962.54 | -1.21 | 906.89 | 882.92 | 854.99 |
| C-2 | 853 | 841.54 | 1.34 | 793.71 | 767.51 | 729.18 |
| C-3 | 974 | 946.12 | 2.86 | 893.31 | 865.83 | 820.03 |
| E-1 | 938 | 919.75 | 1.95 | 831.78 | 803.89 | 758.07 |
| E-2 | 945 | 969.90 | -2.63 | 919.53 | 882.90 | 845.99 |
| E-3 | 835 | 836.29 | -0.15 | 802.49 | 775.80 | 733.18 |
Table 11 Change in projectile velocity during perforation
| 弹体 编号 | 靶网速度/ (m·s-1) | 高速摄影测得速度/(m·s-1) | ||||
|---|---|---|---|---|---|---|
| 靶1前 | 相对 误差/% | 靶1后 | 靶2后 | 靶3后 | ||
| C-1 | 951 | 962.54 | -1.21 | 906.89 | 882.92 | 854.99 |
| C-2 | 853 | 841.54 | 1.34 | 793.71 | 767.51 | 729.18 |
| C-3 | 974 | 946.12 | 2.86 | 893.31 | 865.83 | 820.03 |
| E-1 | 938 | 919.75 | 1.95 | 831.78 | 803.89 | 758.07 |
| E-2 | 945 | 969.90 | -2.63 | 919.53 | 882.90 | 845.99 |
| E-3 | 835 | 836.29 | -0.15 | 802.49 | 775.80 | 733.18 |
| 工况编号 | 初速/ (m·s-1) | 位置 | 实验结果/ (m·s-1) | 仿真结果/ (m·s-1) | 相对 误差/% |
|---|---|---|---|---|---|
| C-1 | 962.54 | 靶1 | 906.89 | 930.36 | 2.59 |
| 靶2 | 882.92 | 911.27 | 3.21 | ||
| 靶3 | 854.99 | 892.29 | 4.36 | ||
| E-3 | 836.29 | 靶1 | 802.49 | 799.63 | -0.36 |
| 靶2 | 775.80 | 781.22 | 0.70 | ||
| 靶3 | 733.18 | 761.04 | 3.80 |
Table 12 Comparison of experimental and simulated projectile velocities
| 工况编号 | 初速/ (m·s-1) | 位置 | 实验结果/ (m·s-1) | 仿真结果/ (m·s-1) | 相对 误差/% |
|---|---|---|---|---|---|
| C-1 | 962.54 | 靶1 | 906.89 | 930.36 | 2.59 |
| 靶2 | 882.92 | 911.27 | 3.21 | ||
| 靶3 | 854.99 | 892.29 | 4.36 | ||
| E-3 | 836.29 | 靶1 | 802.49 | 799.63 | -0.36 |
| 靶2 | 775.80 | 781.22 | 0.70 | ||
| 靶3 | 733.18 | 761.04 | 3.80 |
| [1] |
doi: 10.1016/j.ijimpeng.2023.104590 URL |
| [2] |
doi: 10.1016/j.oceaneng.2022.112639 URL |
| [3] |
张斐, 黄群涛, 郭盛雨, 等. 多次强动载荷下某船用钢力学性能试验研究[J]. 兵器装备工程学报, 2022, 43(3):281-285.
|
|
|
|
| [4] |
郑成, 朱业飞, 徐峰, 等. 基于板厚补偿的不同型号钢制靶板在舱内爆炸载荷作用下的等效方法[J/OL]. 爆炸与冲击, 2025 (2025-03-10) [2025-04-17].https://doi.org/10.11883/bzycj.2024.0446.
|
|
|
|
| [5] |
doi: 10.1016/j.pmatsci.2020.100755 URL |
| [6] |
doi: 10.1016/j.msea.2022.142689 URL |
| [7] |
doi: 10.1016/j.ijsolstr.2022.111993 URL |
| [8] |
doi: 10.1016/j.ijimpeng.2022.104261 URL |
| [9] |
陈思远, 罗本永, 王显正. NPR新材料钢在动态冲击载荷下的力学性能研究[J]. 舰船科学技术, 2024, 46(10):65-70.
|
|
|
|
| [10] |
doi: 10.1016/0013-7944(85)90052-9 URL |
| [11] |
doi: 10.1016/j.ijimpeng.2020.103717 URL |
| [12] |
doi: 10.1016/j.ijimpeng.2023.104841 URL |
| [13] |
伍星星, 孟利平, 刘建湖, 等. 应力三轴度对船用钢断裂破坏的影响机理分析[J]. 船舶力学, 2022, 26(4):547-556.
|
|
|
|
| [14] |
伍星星, 刘建湖, 孟利平, 等. 金属材料试件在压缩、扭转、拉伸断裂过程中的应力状态变化及表征[J]. 船舶力学, 2020, 34(5):145-154.
|
|
|
|
| [15] |
doi: 10.1016/j.ijimpeng.2019.02.004 URL |
| [16] |
|
| [17] |
朱锡, 冯文山. 低速锥头弹丸对薄板穿孔的破坏模式研究[J]. 兵工学报, 1997, 12(1):27-32.
|
|
|
|
| [18] |
姜风春, 刘瑞堂, 张晓欣. 船用945钢的动态力学性能研究[J]. 兵工学报, 2000, 21(3):257-260.
|
|
|
|
| [19] |
|
| [20] |
李营, 汪玉, 吴卫国, 等. 船用907A钢的动态力学性能和本构关系[J]. 哈尔滨工程大学学报, 2015, 36(1):127-129.
|
|
|
|
| [21] |
张凯, 张磊, 赵鹏铎, 等. 某型船用钢的动态力学性能和本构关系[J]. 兵工学报, 2015, 36(增刊1):141-144.
|
|
|
|
| [22] |
邓云飞, 胡昂, 任光辉, 等. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3):192-198.
|
|
|
|
| [23] |
doi: 10.1016/j.ijmecsci.2022.107965 URL |
| [24] |
doi: 10.1016/j.ijimpeng.2021.103897 URL |
| [25] |
doi: 10.1016/j.ijmecsci.2005.03.003 URL |
| [26] |
王浩. 椭圆变截面弹体贯穿加筋板破坏模式与偏转机理研究[D]. 北京: 北京理工大学, 2020.
|
|
|
|
| [27] |
李营. 液舱防爆炸破片侵彻作用机理研究[D]. 武汉: 武汉理工大学, 2014.
|
|
|
|
| [28] |
doi: 10.1016/j.dt.2023.03.025 URL |
| [29] |
温鲁. 921A钢加筋板极限强度研究[D]. 武汉: 武汉理工大学, 2021.
|
|
|
|
| [30] |
doi: 10.1016/j.ijimpeng.2023.104515 URL |
| [31] |
窦旺. 典型金属材料在不同应力状态及变率下的断裂行为研究[D]. 北京: 北京理工大学, 2022.
|
|
|
|
| [32] |
doi: 10.1016/j.ijimpeng.2016.11.012 URL |
| [33] |
许泽建, 窦旺, 黄风雷. 一种应力状态可控的拉剪试样:CN113432974A[P].(2023-07-18) [2025-04-17].
|
|
|
|
| [34] |
陈俊岭, 舒文雅, 李金威. Q235低合金钢在不同应变率下力学性能的试验研究[J]. 同济大学学报(自然科学版), 2016, 44(7):1071-1075.
|
|
|
|
| [35] |
doi: 10.1016/j.ijmecsci.2004.02.006 URL |
| [36] |
doi: 10.1016/j.ijsolstr.2012.01.011 URL |
| [37] |
doi: 10.1016/j.ijplas.2009.07.006 URL |
| [38] |
doi: 10.1016/j.mechmat.2007.11.006 URL |
| [39] |
doi: 10.1016/j.ijsolstr.2009.12.011 URL |
| [40] |
doi: 10.1016/0022-5096(76)90024-7 URL |
| [41] |
doi: 10.1016/j.jcsr.2016.04.018 URL |
| [42] |
杜华池, 张先锋, 刘闯, 等. 弹体斜侵彻多层间隔钢靶的弹道特性[J]. 兵工学报, 2021, 42(6):1204-1214.
doi: 10.3969/j.issn.1000-1093.2021.06.010 |
|
doi: 10.3969/j.issn.1000-1093.2021.06.010 |
|
| [43] |
doi: 10.1016/j.mtcomm.2024.108083 URL |
| [1] | FU Liheng, YAO Xiangyang, WANG Luqing, MA Honghao, QI Feng. The Dynamic Mechanical Properties and Constitutive Model of Fiber-reinforced Polyurea Materials [J]. Acta Armamentarii, 2025, 46(11): 250073-. |
| [2] | LI Yuan, WANG Tianchi, HOU Bing, SUO Tao, DOU Qingbo. Numerical Modeling on Explosion Protection of Sintered Fiber Network Material [J]. Acta Armamentarii, 2025, 46(10): 250402-. |
| [3] | LING Jing, LIANG Yanxiang, JING Lin. Dynamic Impact Mechanics Response and Deformation Mechanisms of Al15(CoCrFeNi)85 High-entropy Alloy [J]. Acta Armamentarii, 2025, 46(10): 250499-. |
| [4] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation,Damage and Failure Behaviors of High-entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 2025, 46(1): 231183-. |
| [5] | NING Jianguo, LI Yuhui, YANG Shuai, XU Xiangzhao. Research on Constitutive Model of Low-temperature Concrete Subjected to Impact Load [J]. Acta Armamentarii, 2024, 45(12): 4339-4349. |
| [6] | XU Bian, ZHENG Yuxuan, YANG Hongsheng, ZHOU Fenghua. Ductile Fragmentation with a Power Law Cohesive Fracture Model [J]. Acta Armamentarii, 2023, 44(5): 1493-1501. |
| [7] | WANG Guijun, WU Yanqing, HOU Xiao, HUANG Fenglei. Research on the Viscoelastic Constitutive Model of Composite Solid Propellant Containing Damage Based on Mesostructure [J]. Acta Armamentarii, 2023, 44(12): 3696-3706. |
| [8] | ZHAO Zehu, LI Xianglong, HU Qiwen, WANG Jianguo. Dynamic Mechanical Properties and Damage Constitutive Model of Copper-bearing Garnet-biotite Schist [J]. Acta Armamentarii, 2023, 44(12): 3805-3814. |
| [9] | NING Jianguo, YANG Shuai, LI Yuhui, XU Xiangzhao. Constitutive Model and Blast Resistance Test of Concrete under Low/Room Temperature Curing [J]. Acta Armamentarii, 2023, 44(10): 2932-2943. |
| [10] | ZENG Zhi-yin, GAO Xiao-ke, LIU Peng-ke, YU Hua-sa. Dynamic Constitutive Model of Gun Steel Material and Its Verification [J]. Acta Armamentarii, 2015, 36(11): 2038-2044. |
| [11] | CHEN Peng, LU Fang-yun, QIN Jin-gui, CHEN Rong, CHEN Jin, LI Zhi-bin, JIANG Bang-hai. Dynamic Compressive Mechanical Properties of Tungstenic Reactive Material [J]. Acta Armamentarii, 2015, 36(10): 1861-1866. |
| [12] | YANG Xiao-hong, XU Jin-sheng, SUN Jun-li, HU Shao-qing, ZHOU Chang-sheng. Research on Visco-hyperelastic Constitutive Model of EPDM [J]. Acta Armamentarii, 2014, 35(8): 1205-1209. |
| [13] | HU Jian-guo, MA Da-wei, LE Gui-gao, CAI De-yong. Study on Influence of Impacted Craters on Landing Performance of Lunar Lander [J]. Acta Armamentarii, 2013, 34(8): 1046-1050. |
| [14] | ZHANG Wei, WEI Gang, XIAO Xin-ke. Constitutive Relation and Fracture Criterion of 2A12 Aluminum Alloy [J]. Acta Armamentarii, 2013, 34(3): 276-282. |
| [15] | CHANG Wu-jun, JU Yu-tao, WANG Peng-bo. Research on Correlation Between Dewetting and Mechanical Property of HTPB Propellant [J]. Acta Armamentarii, 2012, 33(3): 261-266. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||