
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250189-.doi: 10.12382/bgxb.2025.0189
Previous Articles Next Articles
LU Junjie, ZOU Quan*(
), CHEN Longmiao
Received:2025-03-19
Online:2025-11-27
Contact:
ZOU Quan
CLC Number:
LU Junjie, ZOU Quan, CHEN Longmiao. Nonlinear Dynamic Modeling and Analysis of Chain Rotational Shell Magazine[J]. Acta Armamentarii, 2025, 46(11): 250189-.
Add to citation manager EndNote|Ris|BibTeX
| 参数 | 搜索范围 |
|---|---|
| 电机与小齿轮等效转动惯量Jm/(kg·m2) | [10-4,10-3] |
| 大齿轮、链轮及传动轴等效转动惯量Jc/(kg·m2) | [10-2,1] |
| 电机端静摩擦力矩Tcm/(N·m) | [5×10-4,10-3] |
| 电机端库伦摩擦力矩Tsm/(N·m) | [0.01,0.20] |
| 电机端黏性摩擦系数kfm/(N·m·s) | [10-4,2×10-3] |
| 负载端静摩擦力矩Tcl/(N·m) | [1,10] |
| 负载端库伦摩擦力矩Tsl/(N·m) | [Tcl,10] |
| 负载端黏性摩擦系数kfl/(N·m·s) | [0.01,0.20] |
Table 1 Parameters to be identified and their ranges
| 参数 | 搜索范围 |
|---|---|
| 电机与小齿轮等效转动惯量Jm/(kg·m2) | [10-4,10-3] |
| 大齿轮、链轮及传动轴等效转动惯量Jc/(kg·m2) | [10-2,1] |
| 电机端静摩擦力矩Tcm/(N·m) | [5×10-4,10-3] |
| 电机端库伦摩擦力矩Tsm/(N·m) | [0.01,0.20] |
| 电机端黏性摩擦系数kfm/(N·m·s) | [10-4,2×10-3] |
| 负载端静摩擦力矩Tcl/(N·m) | [1,10] |
| 负载端库伦摩擦力矩Tsl/(N·m) | [Tcl,10] |
| 负载端黏性摩擦系数kfl/(N·m·s) | [0.01,0.20] |
| 参数 | 第1组 | 第2组 | 第3组 | 平均值 |
|---|---|---|---|---|
| Jm/(kg·m2) | 2.31×10-4 | 1.47×10-4 | 9.24×10-4 | 4.34×10-4 |
| Jc/(kg·m2) | 0.0311 | 0.0546 | 0.0181 | 0.0346 |
| Tcm/(N·m) | 9.9×10-4 | 7.0×10-4 | 7.1×10-4 | 8.0×10-4 |
| Tsm/(N·m) | 0.062 | 0.150 | 0.088 | 0.100 |
| kfm/(N·m·s) | 9.5×10-4 | 11.2×10-4 | 9.3×10-4 | 1.0×10-3 |
| Tcl/(N·m) | 4.28 | 4.73 | 5.39 | 4.80 |
| Tsl/(N·m) | 4.64 | 5.09 | 5.57 | 5.10 |
| kfl/(N·m·s) | 0.09 | 0.10 | 0.14 | 0.11 |
Table 2 Parameter identification results
| 参数 | 第1组 | 第2组 | 第3组 | 平均值 |
|---|---|---|---|---|
| Jm/(kg·m2) | 2.31×10-4 | 1.47×10-4 | 9.24×10-4 | 4.34×10-4 |
| Jc/(kg·m2) | 0.0311 | 0.0546 | 0.0181 | 0.0346 |
| Tcm/(N·m) | 9.9×10-4 | 7.0×10-4 | 7.1×10-4 | 8.0×10-4 |
| Tsm/(N·m) | 0.062 | 0.150 | 0.088 | 0.100 |
| kfm/(N·m·s) | 9.5×10-4 | 11.2×10-4 | 9.3×10-4 | 1.0×10-3 |
| Tcl/(N·m) | 4.28 | 4.73 | 5.39 | 4.80 |
| Tsl/(N·m) | 4.64 | 5.09 | 5.57 | 5.10 |
| kfl/(N·m·s) | 0.09 | 0.10 | 0.14 | 0.11 |
| 实验序号 | 最大误差 emax/rad | 稳态绝对 误差 | 稳态相对 误差 | 拟合系数 R2/% |
|---|---|---|---|---|
| 实验1.1 | -7.4675 | 1.0414 | 0.6912 | 99.6506 |
| 实验1.2 | -12.2467 | -6.9276 | -4.5921 | 98.2065 |
| 实验1.3 | -7.8050 | -2.6598 | -1.7624 | 99.5014 |
| 实验1.4 | -4.3804 | 3.4572 | 2.2945 | 99.7902 |
| 实验1.5 | -11.6930 | -7.7595 | -5.1371 | 98.0965 |
| 实验1.6 | 5.8190 | 5.8137 | 3.8601 | 99.5074 |
| 实验1.7 | -8.8883 | 0.9115 | 0.6044 | 99.5643 |
| 实验2.1 | 6.9315 | 1.7702 | -1.1748 | 99.5000 |
| 实验2.2 | 9.8886 | 5.3970 | -3.5790 | 98.8713 |
| 实验2.3 | 7.4316 | -0.0147 | 0.0097 | 99.4898 |
| 实验2.4 | 11.8154 | 1.3188 | -0.8735 | 98.7416 |
| 实验2.5 | 5.5125 | 2.3613 | -1.5679 | 99.7556 |
| 实验2.6 | 9.5461 | 2.5017 | -1.6597 | 99.2255 |
| 实验2.7 | 4.0714 | -0.6637 | 0.4400 | 99.8643 |
| 实验3.1 | -38.0032 | -36.2566 | 5.9717 | 99.5456 |
| 实验3.2 | -18.5883 | -4.9677 | 0.8182 | 99.8738 |
| 实验3.3 | 20.3553 | -16.3835 | 2.6984 | 99.8053 |
| 实验4.1 | 48.3395 | 26.2945 | -4.3309 | 98.4226 |
| 实验4.2 | 34.5661 | 10.4529 | -1.7216 | 99.2000 |
| 实验4.3 | 41.4654 | 5.1592 | -0.8497 | 99.024 7 |
Table 3 Model validation results
| 实验序号 | 最大误差 emax/rad | 稳态绝对 误差 | 稳态相对 误差 | 拟合系数 R2/% |
|---|---|---|---|---|
| 实验1.1 | -7.4675 | 1.0414 | 0.6912 | 99.6506 |
| 实验1.2 | -12.2467 | -6.9276 | -4.5921 | 98.2065 |
| 实验1.3 | -7.8050 | -2.6598 | -1.7624 | 99.5014 |
| 实验1.4 | -4.3804 | 3.4572 | 2.2945 | 99.7902 |
| 实验1.5 | -11.6930 | -7.7595 | -5.1371 | 98.0965 |
| 实验1.6 | 5.8190 | 5.8137 | 3.8601 | 99.5074 |
| 实验1.7 | -8.8883 | 0.9115 | 0.6044 | 99.5643 |
| 实验2.1 | 6.9315 | 1.7702 | -1.1748 | 99.5000 |
| 实验2.2 | 9.8886 | 5.3970 | -3.5790 | 98.8713 |
| 实验2.3 | 7.4316 | -0.0147 | 0.0097 | 99.4898 |
| 实验2.4 | 11.8154 | 1.3188 | -0.8735 | 98.7416 |
| 实验2.5 | 5.5125 | 2.3613 | -1.5679 | 99.7556 |
| 实验2.6 | 9.5461 | 2.5017 | -1.6597 | 99.2255 |
| 实验2.7 | 4.0714 | -0.6637 | 0.4400 | 99.8643 |
| 实验3.1 | -38.0032 | -36.2566 | 5.9717 | 99.5456 |
| 实验3.2 | -18.5883 | -4.9677 | 0.8182 | 99.8738 |
| 实验3.3 | 20.3553 | -16.3835 | 2.6984 | 99.8053 |
| 实验4.1 | 48.3395 | 26.2945 | -4.3309 | 98.4226 |
| 实验4.2 | 34.5661 | 10.4529 | -1.7216 | 99.2000 |
| 实验4.3 | 41.4654 | 5.1592 | -0.8497 | 99.024 7 |
| 参数 | 标称值 | 变化范围 | 备注 |
|---|---|---|---|
| Ld/H | 0.0032 | [0.0016,0.0064] | 电机d轴的电感 |
| Lq/H | 0.0032 | [0.0016,0.0064] | 电机q轴的电感 |
| φf/Wb | 0.1 | [0.085,0.115] | 电机永磁体磁链 |
| R/Ω | 0.92 | [0.46,1.84] | 电机定子绕组电阻 |
| kfm/(N·m·s) | 0.001 | [0.0005,0.002] | 电机端黏性摩擦系数 |
| Tcm/(N·m) | 0.0008 | [0.0004,0.0016] | 电机端库伦摩擦力矩 |
| Tsm/(N·m) | 0.1 | [0.05,0.2] | 电机端静摩擦力矩 |
| Jm/(kg·m2) | 0.00043364 | [0.0002, 0.0006] | 电机及小齿轮等效转动惯量 |
| Jc/(kg·m2) | 0.0346 | [0.0173, 0.0692] | 大齿轮、链轮及传动轴等效转动惯量 |
| mC/kg | 45 | 0,45 | 弹丸质量 |
| jc/rad | 0.013 | [0.0065,0.026] | 齿轮啮合间隙的一半 |
| jl/rad | 0.001 | [0.0005,0.002] | 链轮滚子间隙的一半 |
| kfl/(N·m·s) | 0.11 | [0.055,0.22] | 负载端黏性摩擦系数 |
| Tcl/(N·m) | 4.8 | [2.4,9.6] | 负载端库伦摩擦力矩 |
| Tsl/(N·m) | 5.1 | [Tcl,10.2] | 负载端静摩擦力矩 |
| k/(N·m-1) | 2×108 | [1×108,4×108] | 链节等效刚度 |
| kc/(N·m) | 3×105 | [1×105,9×105] | 齿轮等效传动刚度 |
Table 4 Parameters to be analyzed and their ranges
| 参数 | 标称值 | 变化范围 | 备注 |
|---|---|---|---|
| Ld/H | 0.0032 | [0.0016,0.0064] | 电机d轴的电感 |
| Lq/H | 0.0032 | [0.0016,0.0064] | 电机q轴的电感 |
| φf/Wb | 0.1 | [0.085,0.115] | 电机永磁体磁链 |
| R/Ω | 0.92 | [0.46,1.84] | 电机定子绕组电阻 |
| kfm/(N·m·s) | 0.001 | [0.0005,0.002] | 电机端黏性摩擦系数 |
| Tcm/(N·m) | 0.0008 | [0.0004,0.0016] | 电机端库伦摩擦力矩 |
| Tsm/(N·m) | 0.1 | [0.05,0.2] | 电机端静摩擦力矩 |
| Jm/(kg·m2) | 0.00043364 | [0.0002, 0.0006] | 电机及小齿轮等效转动惯量 |
| Jc/(kg·m2) | 0.0346 | [0.0173, 0.0692] | 大齿轮、链轮及传动轴等效转动惯量 |
| mC/kg | 45 | 0,45 | 弹丸质量 |
| jc/rad | 0.013 | [0.0065,0.026] | 齿轮啮合间隙的一半 |
| jl/rad | 0.001 | [0.0005,0.002] | 链轮滚子间隙的一半 |
| kfl/(N·m·s) | 0.11 | [0.055,0.22] | 负载端黏性摩擦系数 |
| Tcl/(N·m) | 4.8 | [2.4,9.6] | 负载端库伦摩擦力矩 |
| Tsl/(N·m) | 5.1 | [Tcl,10.2] | 负载端静摩擦力矩 |
| k/(N·m-1) | 2×108 | [1×108,4×108] | 链节等效刚度 |
| kc/(N·m) | 3×105 | [1×105,9×105] | 齿轮等效传动刚度 |
| 装载 情况 | 电机与链 轮角度 | 最大误差 emax/rad | 稳态绝对 误差 | (1弹位)稳态相对 误差 |
|---|---|---|---|---|
| 满载 | 电机角度 | -15.8234 | 4.5225 | 2.9976 |
| 链轮角度 | -0.4019 | 0.1119 | 2.9670 | |
| 半载 | 电机角度 | -24.1395 | -4.9115 | -3.2562 |
| 链轮角度 | -0.5601 | -0.1252 | -3.3204 | |
| 空载 | 电机角度 | -11.9442 | -2.4508 | -1.6244 |
| 链轮角度 | -0.3032 | -0.0850 | -2.2564 |
Table 5 Model validation results
| 装载 情况 | 电机与链 轮角度 | 最大误差 emax/rad | 稳态绝对 误差 | (1弹位)稳态相对 误差 |
|---|---|---|---|---|
| 满载 | 电机角度 | -15.8234 | 4.5225 | 2.9976 |
| 链轮角度 | -0.4019 | 0.1119 | 2.9670 | |
| 半载 | 电机角度 | -24.1395 | -4.9115 | -3.2562 |
| 链轮角度 | -0.5601 | -0.1252 | -3.3204 | |
| 空载 | 电机角度 | -11.9442 | -2.4508 | -1.6244 |
| 链轮角度 | -0.3032 | -0.0850 | -2.2564 |
| [1] |
侯保林, 樵军谋, 刘琮敏. 火炮自动装填[M]. 北京: 兵器工业出版社, 2010.
|
|
|
|
| [2] |
陈冬, 钱林方, 陈志群, 等. 基于改进拟连续算法的回转弹仓位置控制[J]. 兵工学报, 2024, 45(5):1436-1448.
doi: 10.12382/bgxb.2023.0064 |
|
doi: 10.12382/bgxb.2023.0064 |
|
| [3] |
范鑫. 基于参数辨识的链式回转弹仓控制技术研究[D]. 南京: 南京理工大学, 2021.
|
|
|
|
| [4] |
姚来鹏, 侯保林, 刘曦, 等. 基于非线性干扰观测器的自动弹仓终端滑模控制[J]. 中国机械工程, 2020, 31(15):1787-1792,1797.
doi: 10.3969/j.issn.1004-132X.2020.15.004 |
|
doi: 10.3969/j.issn.1004-132X.2020.15.004 |
|
| [5] |
文浩, 侯保林, 林瑜斌, 等. 曲线链式回转弹仓动力学模型不确定参数辨识[J]. 兵工学报, 2024, 45(5):1460-1471.
doi: 10.12382/bgxb.2022.1196 |
|
doi: 10.12382/bgxb.2022.1196 |
|
| [6] |
鲍丹, 卫俞凯, 金鑫, 等. 考虑输出约束和输入饱和的弹仓自适应控制[J]. 兵工学报, 2024, 45(3):789-797.
doi: 10.12382/bgxb.2022.0896 |
|
doi: 10.12382/bgxb.2022.0896 |
|
| [7] |
doi: 10.1007/s11071-024-10386-4 |
| [8] |
岳才成, 钱林方, 徐亚栋, 等. 基于指数趋近律链传动弹仓自适应模糊滑模控制[J]. 上海交通大学学报, 2018, 52(6):750-756.
doi: 10.16183/j.cnki.jsjtu.2018.06.017 |
|
|
|
| [9] |
谢瑶, 徐亚栋, 鲁飞, 等. 基于扩展状态观测器的链式自动弹仓广义预测控制[J]. 火炮发射与控制学报, 2024, 45(2):105-111.
|
|
|
|
| [10] |
doi: 10.1049/elp2.v18.9 URL |
| [11] |
doi: 10.1016/j.dt.2024.04.008 URL |
| [12] |
doi: 10.1007/s12555-021-0253-3 |
| [13] |
doi: 10.1007/s12206-023-0536-0 |
| [14] |
doi: 10.1109/Access.6287639 URL |
| [15] |
邹权, 钱林方, 徐亚栋, 等. 链式回转弹仓的自适应鲁棒控制[J]. 兵工学报, 2014, 35(11):1922-1927.
doi: 10.3969/j.issn.1000-1093.2014.11.026 |
|
doi: 10.3969/j.issn.1000-1093.2014.11.026 |
|
| [16] |
doi: 10.1007/s11071-024-09836-w |
| [17] |
李兵强, 陈晓雷, 林辉, 等. 机电伺服系统齿隙补偿及终端滑模控制[J]. 电工技术学报, 2016, 31(9):162-168.
|
|
|
|
| [18] |
王彬, 张建书, 段志峰, 等. 行进间坦克炮控系统动力学建模与稳定控制[J]. 兵工学报, 2024, 45(11):4175-4190.
doi: 10.12382/bgxb.2024.0485 |
|
doi: 10.12382/bgxb.2024.0485 |
|
| [19] |
何伟栋. 某链式回转弹仓设计及动力学仿真研究[D]. 西安: 西安工业大学, 2021.
|
|
|
|
| [20] |
陆栋栋. 重型单向齿形推弹链的设计研究[D]. 南京: 南京理工大学, 2016.
|
|
|
|
| [21] |
doi: 10.1109/TCST.2021.3063420 URL |
| [22] |
doi: 10.3390/app12178392 URL |
| [23] |
|
| [1] | LIN Yubin, HOU Baolin, BAO Dan, ZHAO Wei. Implicit Lyapunov Function-based Variable Gain Super-twisting Sliding Mode Control of an Ammunition Transfer Manipulator [J]. Acta Armamentarii, 2024, 45(8): 2573-2583. |
| [2] | ZHOU Guohua, LI Linfeng, WU Kena, LIU Yuelin, XIA Shuai. Numerical Simulation of Magnetic Interference Parameter Identification of AUV Based on L-SHADE Agorithm [J]. Acta Armamentarii, 2024, 45(8): 2678-2687. |
| [3] | ZHAO Wei, HOU Baolin, YAN Shaojun, BAO Dan, LIN Yubin. A Dynamic Model of Interval Uncertainty of Rotational Chain Shell Magazine [J]. Acta Armamentarii, 2024, 45(6): 1991-2002. |
| [4] | CHEN Dong, QIAN Linfang, CHEN Zhiqun, CHEN Longmiao, ZOU Quan, CHEN Junhua. An Improved Quasi-continuous Algorithm for Rotational Shell Magazine Position Control [J]. Acta Armamentarii, 2024, 45(5): 1436-1448. |
| [5] | WEN Hao, HOU Baolin, LIN Yubin, JIN Xin. Dynamic Model Uncertain Parameter Identification for A Curved Chain Rotary Shell Magazine [J]. Acta Armamentarii, 2024, 45(5): 1460-1471. |
| [6] | WANG Qianglong, GAO Xiaoguang, LI Xinyu, YAN Xuchen, WAN Kaifang. Global Sensitivity Analysis on Accuracy of Aviation Fire Control System via DBN Effectiveness Fitting [J]. Acta Armamentarii, 2024, 45(10): 3430-3444. |
| [7] | ZHU Qixin, JIANG Chenyan, ZHANG Guoping, ZHU Yonghong. Identification of Mechanical Parameters of Permanent Magnet Servo System Based on Orthogonal Characteristics of Trigonometric Function [J]. Acta Armamentarii, 2023, 44(6): 1820-1828. |
| [8] | LI Meng, WU Haijun, DONG Heng, REN Guang, ZHANG Peng, HUANG Fenglei. Machine Learning-based Models for Predicting the Penetration Depth of Concrete [J]. Acta Armamentarii, 2023, 44(12): 3771-3782. |
| [9] | LIU Qin, SUN Zhi-li, QIAN Yun-peng, LIU Ying. Reliable Fatigue Life Analysis Method Based on Probabilistic Performance Measure [J]. Acta Armamentarii, 2016, 37(8): 1530-1535. |
| [10] | JIN Xin, ZHOU Ke-dong, HE Lei, HUANG Xue-ying, ZHANG Jun-bin. Parameter Identification of Human Body under Successive Impact [J]. Acta Armamentarii, 2016, 37(4): 598-602. |
| [11] | CHEN Jian, TIAN Liang , SHANG Hong-mo , ZHENG Deng-sheng, WANG Gui-cheng. Identification of Joint Part Parameters of HSK Spindle-toolholder Based on Closed-form Approach [J]. Acta Armamentarii, 2015, 36(7): 1309-1317. |
| [12] | CHENG Guang-li, HU Jin-hua, ZHANG Ming-min. Analytical Methods for Sensitivity of Acoustic Field in Shallow Water to Uncertain Environmental Parameters [J]. Acta Armamentarii, 2014, 35(4): 567-571. |
| [13] | YANG Li, SUN Zhi-li, YIN Ming-ang, WANG Yu-ning. Optimization Design of Cartridge Pressing Structure for Feed Mechanism Based on the Sensitivity Analysis of Multi-attributeDecision Making [J]. Acta Armamentarii, 2014, 35(2): 241-247. |
| [14] | ZOU Quan, QIAN Lin-fang, XU Ya-dong, JIANG Qing-shan, LIU Yan-hui. Adaptive Robust Control of Rotational Chain Shell Magazine [J]. Acta Armamentarii, 2014, 35(11): 1922-1927. |
| [15] | TANG Yu-juan, WANG Xin-jie, WANG Jiong. Design and Experiment of a Linear Ultrasonic Motor for Fuze Safety System [J]. Acta Armamentarii, 2014, 35(1): 27-34. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||