| [1] |
高蕾, 刘志浩, 高钦和, 等. 多轴特种车辆传动系统机械摩擦阻力损失与传动效率研究综述[J]. 振动与冲击, 2023, 42(18):138-154.
|
|
GAO L, LIU Z H, GAO Q H, et al. Review on the mechanical friction resistance loss and transmission efficiency of a multi-axle special vehicle transmission system[J]. Journal of Vibration and Shock, 2023, 42(18):138-154. (in Chinese)
|
| [2] |
王斌, 宁斌, 陈辛波, 等. 齿轮传动搅油功率损失的研究进展[J]. 机械工程学报, 2020, 56(23):1-20.
doi: 10.3901/JME.2020.23.001
|
|
WANG B, NING B, CHEN X B, et al. Research progress in churning losses of gear transmission[J]. Journal of Mechanical Engineering, 2020, 56(23):1-20. (in Chinese)
doi: 10.3901/JME.2020.23.001
|
| [3] |
徐保荣, 张金豹, 姚李刚, 等. 液力机械综合传动装置低温阻力矩特性研究与验证[J]. 兵工学报, 2023, 44(6):1829-1836.
doi: 10.12382/bgxb.2022.0182
|
|
XU B R, ZHANG J B, YAO L G, et al. Study and validation of resistance torque characteristics of hydro-mechanical comprehensive transmission device under low temperature conditions[J]. Acta Armamentarii, 2023, 44(6):1829-1836. (in Chinese)
doi: 10.12382/bgxb.2022.0182
|
| [4] |
李义军, 毕小平, 马宁, 等. 车辆传动装置产热建模与计算分析[J]. 中国工程机械学报, 2013, 11(3):216-221.
|
|
LI Y J, BI X P, MA N, et al. Modeling and analysis on the transmission heat generation of vehicles[J]. Chinese Journal of Construction Machinery, 2013, 11(3):216-221. (in Chinese)
|
| [5] |
SHEN Y, RINDERKNECHT S. A method on modelling and analyzing the power losses in vehicle transmission[J]. Forschung im Ingenieurwesen, 2018, 82(7):261-270.
doi: 10.1007/s10010-018-0276-y
|
| [6] |
高蕾, 刘志浩, 高钦和, 等. 特种车辆传动系统效率优化与性能评估方法研究综述[J]. 火炮发射与控制学报, 2024, 45(3):6-16.
|
|
GAO L, LIU Z H, GAO Q H, et al. A review of research methods for efficiency optimization and performance evaluation of special vehicle transmission systems[J]. Journal of Gun Launch & Control, 2024, 45(3):6-16. (in Chinese)
|
| [7] |
张金豹, 邹天刚, 高秀才, 等. 基于中位秩加权的车辆传动装置直驶模式递效率性能评估[J]. 兵工学报, 2022, 43(增刊1):54-59.
|
|
ZHANG J B, ZOU T G, GAO X C, et al. Straight driving efficiency assessment of vehicle transmission device based on the median-rank weighting[J]. Acta Armamentarii, 2022, 43(S1):54-59. (in Chinese)
doi: 10.12382/bgxb.2022.A018
|
| [8] |
张金豹, 盖江涛, 安媛媛, 等. 基于智能优化相关向量机的综合传动变工况直驶传递效率预测[J]. 兵工学报, 2023, 44(1):270-278.
doi: 10.12382/bgxb.2022.0728
|
|
ZHANG J B, GAI J T, AN Y Y, et al. Straight driving transmission efficiency prediction of integrated transmission under variable working conditions based on relevance vector machine with intelligent optimization[J]. Acta Armamentarii, 2023, 44(1):270-278. (in Chinese)
|
| [9] |
KHATTI J, GROVER K S. Prediction of compaction parameters of compacted soil using LSSVM,LSTM,LSBoostRF,and ANN[J]. Innovative Infrastructure Solutions, 2023, 8(2):76.
doi: 10.1007/s41062-023-01048-2
|
| [10] |
QIU S H, CUI X P, PING Z W, et al. Deep learning techniques in intelligent fault diagnosis and prognosis for industrial systems:a review[J]. Sensors, 2023, 23:1305.
doi: 10.3390/s23031305
URL
|
| [11] |
LI W X, LAW K L E. Deep learning models for time series forecasting:a review[J]. IEEE Access, 2024, 12:92306-92327.
doi: 10.1109/ACCESS.2024.3422528
URL
|
| [12] |
FAWAGREH K, GABER M M, ELYAN E. Random forests:from early developments to recent advancements[J]. Systems Science & Control Engineering:An Open Access Journal, 2014, 2:602-609.
|
| [13] |
WANG R H. AdaBoost for feature selection,classification and its relation with SVM,a review[J]. Physics Procedia, 2012, 25:800-807.
doi: 10.1016/j.phpro.2012.03.160
URL
|
| [14] |
CHEN T Q, GUESTRIN C. Xgboost:a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York,NY,US:ACM, 2016:785-794.
|
| [15] |
KE G L, MENG Q, FINLEY T, et al. LightGBM:a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30:3149-3157.
|
| [16] |
HANCOCK J T, KHOSHGOFTAAR T M. CatBoost for big data:an interdisciplinary review[J]. Journal of Big Data, 2020, 7:94.
doi: 10.1186/s40537-020-00369-8
|
| [17] |
MIENYE I D, SUN Y. A survey of ensemble learning:Concepts,algorithms,applications,and prospects[J]. IEEE Access, 2022, 10:99129-99149.
doi: 10.1109/ACCESS.2022.3207287
URL
|
| [18] |
李驰运, 缪建明, 沈丙振. 基于改进Stacking集成学习方法的武器装备体系作战效能预测[J]. 兵工学报, 2023, 44 (11):3455-3464.
doi: 10.12382/bgxb.2022.0797
|
|
LI C Y, MIAO J M, SHEN B Z. Operational effectiveness prediction of weapon equipment system based on improved stacking ensemble learning method[J]. Acta Armamentarii, 2023, 44 (11):3455-3464. (in Chinese)
doi: 10.12382/bgxb.2022.0797
|
| [19] |
WANG Y W, SUN Y Y, DAN Y Q, et al. Online load-loss risk assessment based on stacking ensemble learning for power systems[J]. Frontiers in Energy Research, 2023, 11:1281368.
doi: 10.3389/fenrg.2023.1281368
URL
|
| [20] |
GUO X F, GAO Y, ZHENG D, et al. Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning[J]. Energy Reports, 2020, 6:1424-1431.
doi: 10.1016/j.egyr.2020.11.006
URL
|
| [21] |
SANTOS M R, GUEDES A, SANCHEZ-GENDRIZ I. SHapley additive exPlanations (SHAP) for efficient feature selection in rolling bearing fault diagnosis[J]. Machine Learning and Knowledge Extraction, 2024, 6:316-341.
doi: 10.3390/make6010016
URL
|
| [22] |
WU L Y, LI J H, ZHANG J W, et al. Prediction model for the compressive strength of rock based on stacking ensemble learning and shapley additive explanations[J]. Bulletin of Engineering Geology and the Environment, 2024, 83:439.
doi: 10.1007/s10064-024-03896-3
|