
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250123-.doi: 10.12382/bgxb.2025.0123
Previous Articles Next Articles
YANG Shouhuai1, HUANG Jiangliu2, CHEN Zhihua3, HUANG Zhengui1, WU Mingyu4,*(
), QIU Rongxian5, ZHENG Chun4
Received:2025-02-25
Online:2025-11-27
Contact:
WU Mingyu
CLC Number:
YANG Shouhuai, HUANG Jiangliu, CHEN Zhihua, HUANG Zhengui, WU Mingyu, QIU Rongxian, ZHENG Chun. Prediction of Exterior Ballistics and Impact Point of Mortar Based on Transformer-LSTM Hybrid Neural Network[J]. Acta Armamentarii, 2025, 46(11): 250123-.
Add to citation manager EndNote|Ris|BibTeX
| 选取对象 | 选取区间 | 选取步长 |
|---|---|---|
| 弹道倾角θ/(°) | [40,80] | 2 |
| 迫弹初始射速v0/(m·s-1) | [100,400] | 10 |
Table 1 Principles of selecting exterior ballistic trajectory data
| 选取对象 | 选取区间 | 选取步长 |
|---|---|---|
| 弹道倾角θ/(°) | [40,80] | 2 |
| 迫弹初始射速v0/(m·s-1) | [100,400] | 10 |
| 块名称 | 层名称 | 参数 | 输出尺寸 |
|---|---|---|---|
| Transformer | 输入层 | (128,10,4) | |
| 嵌入层 | 神经元数64 | (128,10,64) | |
| 多头注意力层 | 注意力头数8 | (128,10,64) | |
| 归一化层1 | 输入形状64 | (128,10,64) | |
| Dropout层1 | dropout率0.1 | (128,10,64) | |
| 前馈神经网络 | 神经元数128 | (128,10,128) | |
| 归一化层2 | 神经元数64 | (128,10,64) | |
| Dropout层2 | 输入形状64 | (128,10,64) | |
| dropout率0.1 | (128,10,64) | ||
| 链接块 | 全局平均池化层 | 池化窗口为10 | (128,1,64) |
| LSTM | LSTM层1 | 神经元数32 | (128,1,32) |
| Dropout层3 | dropout率0.1 | (128,1,32) | |
| LSTM层2 | 神经元数32 | (128,32) | |
| Dropout层4 | dropout率0.1 | (128,32) | |
| 全连接层(输出层) | 神经元数3 | (128,3) |
Table 2 Model parameters of Transformer-LSTM hybrid neural network
| 块名称 | 层名称 | 参数 | 输出尺寸 |
|---|---|---|---|
| Transformer | 输入层 | (128,10,4) | |
| 嵌入层 | 神经元数64 | (128,10,64) | |
| 多头注意力层 | 注意力头数8 | (128,10,64) | |
| 归一化层1 | 输入形状64 | (128,10,64) | |
| Dropout层1 | dropout率0.1 | (128,10,64) | |
| 前馈神经网络 | 神经元数128 | (128,10,128) | |
| 归一化层2 | 神经元数64 | (128,10,64) | |
| Dropout层2 | 输入形状64 | (128,10,64) | |
| dropout率0.1 | (128,10,64) | ||
| 链接块 | 全局平均池化层 | 池化窗口为10 | (128,1,64) |
| LSTM | LSTM层1 | 神经元数32 | (128,1,32) |
| Dropout层3 | dropout率0.1 | (128,1,32) | |
| LSTM层2 | 神经元数32 | (128,32) | |
| Dropout层4 | dropout率0.1 | (128,32) | |
| 全连接层(输出层) | 神经元数3 | (128,3) |
| 模型名称 | 层内容 | 层参数 | |
|---|---|---|---|
| LSTM | LSTM层1 | 神经元数量32 | |
| Dropout层1 | dropout率为0.1 | ||
| LSTM层2 | 神经元数量32 | ||
| Dropout层2 | dropout率为0.1 | ||
| 全连接层 | 神经元数量3 | ||
| GRU | GRU层1 | 神经元数量32 | |
| Dropout层1 | dropout率为0.1 | ||
| GRU层2 | 神经元数量32 | ||
| Dropout层2 | dropout率为0.1 | ||
| 全连接层 | 神经元数量3 | ||
Table 3 Parameters of the comparison models
| 模型名称 | 层内容 | 层参数 | |
|---|---|---|---|
| LSTM | LSTM层1 | 神经元数量32 | |
| Dropout层1 | dropout率为0.1 | ||
| LSTM层2 | 神经元数量32 | ||
| Dropout层2 | dropout率为0.1 | ||
| 全连接层 | 神经元数量3 | ||
| GRU | GRU层1 | 神经元数量32 | |
| Dropout层1 | dropout率为0.1 | ||
| GRU层2 | 神经元数量32 | ||
| Dropout层2 | dropout率为0.1 | ||
| 全连接层 | 神经元数量3 | ||
| 模型名称 | 数据类型 | 50%样本区间 | 相对误差 平均值 |
|---|---|---|---|
| Transformer-LSTM | 射程 | [-0.0008,0.0008] | 0.0022 |
| 高度 | [-0.0012,0.0012] | 0.0028 | |
| 偏航 | [-0.0010,0.0010] | 0.0019 | |
| LSTM | 射程 | [-0.0051,0.0051] | 0.0089 |
| 高度 | [-0.0068,0.0068] | 0.0090 | |
| 偏航 | [-0.0044,0.0044] | 0.0072 | |
| GRU | 射程 | [-0.0028,0.0028] | 0.0060 |
| 高度 | [-0.0022,0.0022] | 0.0045 | |
| 偏航 | [-0.0018,0.0018] | 0.0038 |
Table 4 Relative error distributions of single-step predictions of GRU,LSTM and Transformer-LSTM models
| 模型名称 | 数据类型 | 50%样本区间 | 相对误差 平均值 |
|---|---|---|---|
| Transformer-LSTM | 射程 | [-0.0008,0.0008] | 0.0022 |
| 高度 | [-0.0012,0.0012] | 0.0028 | |
| 偏航 | [-0.0010,0.0010] | 0.0019 | |
| LSTM | 射程 | [-0.0051,0.0051] | 0.0089 |
| 高度 | [-0.0068,0.0068] | 0.0090 | |
| 偏航 | [-0.0044,0.0044] | 0.0072 | |
| GRU | 射程 | [-0.0028,0.0028] | 0.0060 |
| 高度 | [-0.0022,0.0022] | 0.0045 | |
| 偏航 | [-0.0018,0.0018] | 0.0038 |
| 模型名称 | 单步时间/s | 多步时间/s |
|---|---|---|
| Transformer-LSTM混合神经网络 | 0.0012 | 3.14 |
| LSTM | 0.0003 | 0.78 |
| GRU | 0.0004 | 1.04 |
| 6自由度弹道仿真模型 | 0.01 | 26.13 |
Table 5 Comparison of prediction time costs
| 模型名称 | 单步时间/s | 多步时间/s |
|---|---|---|
| Transformer-LSTM混合神经网络 | 0.0012 | 3.14 |
| LSTM | 0.0003 | 0.78 |
| GRU | 0.0004 | 1.04 |
| 6自由度弹道仿真模型 | 0.01 | 26.13 |
| [1] |
梁桐嘉, 孙康, 范继, 等. 基于BiLSTM-AM的迫弹外弹道轨迹及落点预测[J/OL]. 火炮发射与控制学报, 2024(2024-09-25)[2025-02-25].https://doi.org/10.19323/j.issn.1673-6524.202405016.
|
|
|
|
| [2] |
李兴隆, 贾方秀, 王晓鸣, 等. 基于线性弹道模型的末段修正弹落点预测[J]. 兵工学报, 2015, 36(7):1188-1194.
doi: 10.3969/j.issn.1000-1093.2015.07.006 |
|
|
|
| [3] |
doi: 10.1155/mpe.v2017.1 URL |
| [4] |
魏五洲, 霍李, 李军明, 等. 基于无迹卡尔曼滤波算法的弹道落点预测方法[J]. 兵工自动化, 2022, 41(2):70-74.
|
|
|
|
| [5] |
|
| [6] |
doi: 10.1109/ACCESS.2021.3092515 URL |
| [7] |
卢新月, 祁克玉, 钱荣朝, 等. 基于长短期记忆神经网络的弹丸落点预测[J]. 探测与控制学报, 2023, 45(1):73-77.
|
|
|
|
| [8] |
doi: 10.1109/ACCESS.2023.3262023 URL |
| [9] |
|
| [10] |
任济寰, 吴祥, 薄煜明, 等. 基于增强上下文信息长短期记忆网络的弹道轨迹预测[J]. 兵工学报, 2023, 44(2):462-471.
doi: 10.12382/bgxb.2021.0489 |
|
doi: 10.12382/bgxb.2021.0489 |
|
| [11] |
郑志伟, 管雪元, 傅健, 等. 基于卷积神经网络与长短期记忆神经网络的弹丸轨迹预测[J]. 兵工学报, 2023, 44(10):2975-2983.
doi: 10.12382/bgxb.2022.0511 |
|
doi: 10.12382/bgxb.2022.0511 |
|
| [12] |
|
| [13] |
孙溪晨, 李伟兵, 黄昌伟, 等. 基于自注意力机制增强的CNN-LSTM的榴弹轨迹多步超前预测[J]. 兵工学报, 2024, 45(增刊1):51-59.
|
|
doi: 10.12382/bgxb.2024.0659 |
|
| [14] |
赵蒙, 王明宇, 王健, 等. 基于运动方程的弹道导弹建模仿真方法[J]. 兵器装备工程学报, 2022, 43(12):118-124.
|
|
|
|
| [15] |
|
| [16] |
|
| [17] |
张圆梦, 李少波, 周鹏, 等. 基于多头注意力机制的残差网络深度学习推荐模型[J]. 计算机与数字工程, 2024, 52(7):1955-1958,1965.
|
|
|
|
| [18] |
余力, 李慧媛, 焦晨璐, 等. 基于多头注意力对抗机制的复杂场景行人轨迹预测[J]. 计算机学报, 2022, 45(6):1133-1146.
|
|
|
|
| [19] |
doi: 10.1016/j.neunet.2023.12.015 URL |
| [20] |
|
| [21] |
|
| [22] |
宋波涛, 许广亮. 基于LSTM与1DCNN的导弹轨迹预测方法[J]. 系统工程与电子技术, 2023, 45(2):504-512.
doi: 10.12305/j.issn.1001-506X.2023.02.22 |
|
doi: 10.12305/j.issn.1001-506X.2023.02.22 |
|
| [23] |
王余宽, 谢新连, 马昊, 等. 基于滑动窗口LSTM网络的船舶航迹预测[J]. 上海海事大学学报, 2022, 43(1):14-22.
|
|
|
| [1] | GAO Zhenhua, QIN Fenqi, WANG Linlin, YU Cungui. An Improved CNN-LSTM-based Fault Diagnosis Method for Breechblock Opening-closing Mechanism [J]. Acta Armamentarii, 2025, 46(9): 240818-. |
| [2] | LIAO Renlong, LUO Zhongtao, YIN Shuijun, ZHANG Wei. A Radar Signal Modulation Recognition Method Based on Multi-scale Dual Attention Network [J]. Acta Armamentarii, 2025, 46(9): 240447-. |
| [3] | LIU Hui, LI Mingyi, HAN Lijin, LIU Baoshuai. Research on Infrared Target Detection and Tracking in Dark Environments [J]. Acta Armamentarii, 2025, 46(8): 240081-. |
| [4] | SHEN Ying, ZHANG Shuo, WANG Shu, SU Yun, XUE Fang, HUANG Feng. A Method for Detecting the Camouflaged Small Target in Complex Scene Using Airborne Polarization Remote Sensing [J]. Acta Armamentarii, 2025, 46(7): 240797-. |
| [5] | QIN Yuemei, CHEN Zhong, YANG Yanbo, LI Shuying. Joint State Equality Constraint Identification and Recursive Filtering Based on Deep Learning [J]. Acta Armamentarii, 2025, 46(6): 240578-. |
| [6] | SUN Shiyan, LI Lin, ZHU Huimin, SHI Zhangsong, LIANG Weige. Intelligent Recognition of Flight Pattern Based on IFPRM-SBLFS Deep Learning [J]. Acta Armamentarii, 2025, 46(5): 240893-. |
| [7] | SUN Xichen, LI Weibing, HUANG Changwei, FU Jiawei, FENG Jun. Multi-step-ahead Prediction of Grenade Trajectory Based on CNN-LSTM Enhanced by Deep Learning and Self-attention Mechanism [J]. Acta Armamentarii, 2024, 45(S1): 51-59. |
| [8] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
| [9] | LI Ping, ZHOU Yu, CAO Ronggang, LI Fadong, CAO Yuxi, LI Jiawu, ZHANG Anqi. A Denoising Method for Complex Background Noise of Infrared Imaging Guidance System Based on Deep Learning and Dual-domain Fusion [J]. Acta Armamentarii, 2024, 45(6): 1747-1760. |
| [10] | LUO Haowen, HE Shaoming, KANG Youwei. A Multitask Guidance Algorithm Based on Transfer Learning [J]. Acta Armamentarii, 2024, 45(6): 1787-1798. |
| [11] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
| [12] | YANG Jiaming, PAN Yue, WANG Qiang, CAO Huaigang, GAO Sunpei. Research on Deep Learning Method of Underwater Weak Target Tracking [J]. Acta Armamentarii, 2024, 45(2): 385-394. |
| [13] | ZHANG Kun, DU Ruiyi, SHI Haotian, HUA Shuai. Prediction of Aircraft Trajectory Based on Mogrifier-BiGRU [J]. Acta Armamentarii, 2024, 45(2): 373-384. |
| [14] | TIAN Daming, MIAO Pu. Visible Light Communication Nonlinear Equalizer Based on Model Solving and Deep Learning [J]. Acta Armamentarii, 2024, 45(2): 466-473. |
| [15] | DING Xiwen, CHENG Hongchang, YUAN Yuan, SU Yue. Detection Method for Field-of-view Defect of Ultraviolet Image Intensifier Based on Improved SSD Algorithm [J]. Acta Armamentarii, 2024, 45(12): 4350-4363. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||