
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (10): 250468-.doi: 10.12382/bgxb.2025.0468
Previous Articles Next Articles
ZHU Wei1, YAO Wenjin1,*(
), HUANG Guangyan2, LI Wenbin1, WANG Xiaoming1
Received:2025-06-07
Online:2025-11-05
Contact:
YAO Wenjin
ZHU Wei, YAO Wenjin, HUANG Guangyan, LI Wenbin, WANG Xiaoming. Mitigation Effects of Nanoporous Material Liquid System on losed-field Blast Loading[J]. Acta Armamentarii, 2025, 46(10): 250468-.
Add to citation manager EndNote|Ris|BibTeX
| 试样 | 入射波 峰值/MPa | 入射波冲量/ (kPa·s) | 透射波 峰值/MPa | 透射波冲量/ (kPa·s) |
|---|---|---|---|---|
| 去离子水 | 395 | 27.0 | 118 | 11.9 |
| NMLS | 391 | 27.2 | 49.7 | 7.7 |
Table 1 Peak pressure and impulse of incident and transmitted waves
| 试样 | 入射波 峰值/MPa | 入射波冲量/ (kPa·s) | 透射波 峰值/MPa | 透射波冲量/ (kPa·s) |
|---|---|---|---|---|
| 去离子水 | 395 | 27.0 | 118 | 11.9 |
| NMLS | 391 | 27.2 | 49.7 | 7.7 |
| 试样 | 入射波 能量/J | 反射波 能量/J | 透射波 能量/J | 试样及装置 耗能/J |
|---|---|---|---|---|
| 无试样 | 35.81 | 0.65 | 33.63 | 1.53 |
| 去离子水 | 34.08 | 28.76 | 3.33 | 1.99 |
| NMLS | 34.58 | 29.04 | 1.10 | 4.44 |
Table 2 Energy of the stress waves for different samples
| 试样 | 入射波 能量/J | 反射波 能量/J | 透射波 能量/J | 试样及装置 耗能/J |
|---|---|---|---|---|
| 无试样 | 35.81 | 0.65 | 33.63 | 1.53 |
| 去离子水 | 34.08 | 28.76 | 3.33 | 1.99 |
| NMLS | 34.58 | 29.04 | 1.10 | 4.44 |
| 结构 名称 | 腔体内填充的 物质 | 液体填充腔体 总质量/g | 纤维 层数 | 纤维围栏 质量/g |
|---|---|---|---|---|
| AF50 | 空气 | 88 | 50 | 254 |
| WF50 | 去离子水 | 314 | 50 | 250 |
| NF50 | NMLS | 290 | 50 | 257 |
| AF65 | 空气 | 87 | 65 | 340 |
| WF65 | 去离子水 | 305 | 65 | 350 |
| NF65 | NMLS | 285 | 65 | 350 |
| AF75 | 空气 | 88 | 75 | 401 |
| WF75 | 去离子水 | 312 | 75 | 400 |
| NF75 | NMLS | 292 | 75 | 395 |
| AF100 | 空气 | 88 | 100 | 571 |
| WF100 | 去离子水 | 315 | 100 | 565 |
| NF100 | NMLS | 294 | 100 | 566 |
Table 3 Specimen arrangement in the explosion experiments
| 结构 名称 | 腔体内填充的 物质 | 液体填充腔体 总质量/g | 纤维 层数 | 纤维围栏 质量/g |
|---|---|---|---|---|
| AF50 | 空气 | 88 | 50 | 254 |
| WF50 | 去离子水 | 314 | 50 | 250 |
| NF50 | NMLS | 290 | 50 | 257 |
| AF65 | 空气 | 87 | 65 | 340 |
| WF65 | 去离子水 | 305 | 65 | 350 |
| NF65 | NMLS | 285 | 65 | 350 |
| AF75 | 空气 | 88 | 75 | 401 |
| WF75 | 去离子水 | 312 | 75 | 400 |
| NF75 | NMLS | 292 | 75 | 395 |
| AF100 | 空气 | 88 | 100 | 571 |
| WF100 | 去离子水 | 315 | 100 | 565 |
| NF100 | NMLS | 294 | 100 | 566 |
| 总纤维层数 | 爆炸后完整纤维层数 | ||
|---|---|---|---|
| AF | WF | NF | |
| 50 | 0 | 0 | 0 |
| 65 | 0 | 0 | 0 |
| 75 | 0 | 0 | 0 |
| 100 | 11 | 11 | 27 |
Table 4 Intact layer number of fiber shells after explosion
| 总纤维层数 | 爆炸后完整纤维层数 | ||
|---|---|---|---|
| AF | WF | NF | |
| 50 | 0 | 0 | 0 |
| 65 | 0 | 0 | 0 |
| 75 | 0 | 0 | 0 |
| 100 | 11 | 11 | 27 |
| 参数 | P-α状态方程 | ||||
|---|---|---|---|---|---|
| 初始密 度ρ0/ (g·cm-3) | 初始声 速c0/ (m·s-1) | 初始渗 入压力 P0/MPa | 完全渗 入压力 Ps/MPa | 压实 指数n | |
| 取值 | 1 | 1480 | 20 | 150 | 2 |
| 参数 | Mie-Grüneisen状态方程[ | ||||
| 参考密 度ρs0/ (g·cm-3) | 参考声 速cs/ (m·s-1) | Grüneisen 系数Γ0 | 拟合 系数 S1 | 比热Cm/ (J·kg-1·K-1) | |
| 取值 | 1.159 | 1483 | 0.28 | 1.75 | 4180 |
Table 5 Material properties for NMLS
| 参数 | P-α状态方程 | ||||
|---|---|---|---|---|---|
| 初始密 度ρ0/ (g·cm-3) | 初始声 速c0/ (m·s-1) | 初始渗 入压力 P0/MPa | 完全渗 入压力 Ps/MPa | 压实 指数n | |
| 取值 | 1 | 1480 | 20 | 150 | 2 |
| 参数 | Mie-Grüneisen状态方程[ | ||||
| 参考密 度ρs0/ (g·cm-3) | 参考声 速cs/ (m·s-1) | Grüneisen 系数Γ0 | 拟合 系数 S1 | 比热Cm/ (J·kg-1·K-1) | |
| 取值 | 1.159 | 1483 | 0.28 | 1.75 | 4180 |
| 参数 | 密度ρ/ (g·cm-3) | 比热比 γ | 参考温度 T0/K | 比热Cm/ (J·kg-1·K-1) | 比内能E0/ (J·kg-1) |
|---|---|---|---|---|---|
| 取值 | 0.001225 | 1.4 | 288.2 | 717.6 | 206800 |
Table 6 Material properties for air[24]
| 参数 | 密度ρ/ (g·cm-3) | 比热比 γ | 参考温度 T0/K | 比热Cm/ (J·kg-1·K-1) | 比内能E0/ (J·kg-1) |
|---|---|---|---|---|---|
| 取值 | 0.001225 | 1.4 | 288.2 | 717.6 | 206800 |
| 参数 | 密度ρ/ (g·cm-3) | 爆速D/ (m·s-1) | A/ GPa | B/ GPa | ω | R1 | R2 | 爆轰能量 密度e/ (kJ·m-3) |
|---|---|---|---|---|---|---|---|---|
| 取值 | 1.695 | 8425 | 852.4 | 18.02 | 0.38 | 4.6 | 1.35 | 8939430 |
Table 7 Material properties for 8701 explosive[25]
| 参数 | 密度ρ/ (g·cm-3) | 爆速D/ (m·s-1) | A/ GPa | B/ GPa | ω | R1 | R2 | 爆轰能量 密度e/ (kJ·m-3) |
|---|---|---|---|---|---|---|---|---|
| 取值 | 1.695 | 8425 | 852.4 | 18.02 | 0.38 | 4.6 | 1.35 | 8939430 |
| 参数 | 密度ρ/ (g·cm-3) | Grüneisen 系数Γ0 | 声速c/ (m·s-1) | 拟合 系数 S1 | 比热Cm/ (J·kg-1·K-1) | 剪切 模量 G/GPa |
|---|---|---|---|---|---|---|
| 取值 | 0.98 | 1.64 | 3570 | 1.3 | 1850 | 2 |
Table 8 Material properties for fiber composite[26]
| 参数 | 密度ρ/ (g·cm-3) | Grüneisen 系数Γ0 | 声速c/ (m·s-1) | 拟合 系数 S1 | 比热Cm/ (J·kg-1·K-1) | 剪切 模量 G/GPa |
|---|---|---|---|---|---|---|
| 取值 | 0.98 | 1.64 | 3570 | 1.3 | 1850 | 2 |
| 工况 代号 | 装药高度 he/mm | 装药质量 me/g | 纤维层内 半径Rf/mm | 液体层厚度 Tl/mm |
|---|---|---|---|---|
| E1R1T1 | 20 | 16.64 | 45 | 10 |
| E1R2T1 | 20 | 16.64 | 80 | 10 |
| E1R3T1 | 20 | 16.64 | 115 | 10 |
| E1R4T1 | 20 | 16.64 | 130 | 10 |
| E1R5T1 | 20 | 16.64 | 150 | 10 |
| E2R2T1 | 30 | 24.96 | 80 | 10 |
| E3R2T1 | 15 | 12.48 | 80 | 10 |
| E4R2T1 | 10 | 8.32 | 80 | 10 |
| E5R2T1 | 5 | 4.16 | 80 | 10 |
| E1R2T2 | 20 | 16.64 | 80 | 5 |
| E1R2T3 | 20 | 16.64 | 80 | 20 |
| E1R2T4 | 20 | 16.64 | 80 | 30 |
Table 9 Numerical simulation scheme
| 工况 代号 | 装药高度 he/mm | 装药质量 me/g | 纤维层内 半径Rf/mm | 液体层厚度 Tl/mm |
|---|---|---|---|---|
| E1R1T1 | 20 | 16.64 | 45 | 10 |
| E1R2T1 | 20 | 16.64 | 80 | 10 |
| E1R3T1 | 20 | 16.64 | 115 | 10 |
| E1R4T1 | 20 | 16.64 | 130 | 10 |
| E1R5T1 | 20 | 16.64 | 150 | 10 |
| E2R2T1 | 30 | 24.96 | 80 | 10 |
| E3R2T1 | 15 | 12.48 | 80 | 10 |
| E4R2T1 | 10 | 8.32 | 80 | 10 |
| E5R2T1 | 5 | 4.16 | 80 | 10 |
| E1R2T2 | 20 | 16.64 | 80 | 5 |
| E1R2T3 | 20 | 16.64 | 80 | 20 |
| E1R2T4 | 20 | 16.64 | 80 | 30 |
| [1] |
曹国鑫. 纳米流控能量吸收耗散系统[J]. 力学进展, 2017, 47(1):227-262.
|
|
|
|
| [2] |
|
| [3] |
doi: 10.1142/S2424913021300012 URL |
| [4] |
doi: 10.3390/ma18102204 URL |
| [5] |
doi: 10.1021/jp3009145 URL |
| [6] |
pmid: 16895383 |
| [7] |
doi: 10.1016/j.matdes.2014.04.028 URL |
| [8] |
doi: 10.1088/0031-8949/74/5/006 URL |
| [9] |
doi: 10.1007/s11665-008-9221-9 URL |
| [10] |
|
| [11] |
doi: 10.1016/j.ijimpeng.2023.104729 URL |
| [12] |
doi: 10.1063/1.4878097 URL |
| [13] |
doi: 10.1016/j.jmps.2013.09.022 URL |
| [14] |
doi: 10.1016/j.colsurfa.2017.10.037 URL |
| [15] |
doi: 10.1063/1.2106002 URL |
| [16] |
孙岳霆. 车用纳米多孔材料液体系统的能量耗散机理研究[D]. 北京: 清华大学, 2015.
|
|
|
|
| [17] |
doi: 10.1016/j.compstruct.2014.03.047 URL |
| [18] |
doi: 10.1016/j.compstruct.2018.05.101 URL |
| [19] |
doi: 10.1016/j.micromeso.2022.112097 URL |
| [20] |
|
| [21] |
doi: 10.1016/j.ijimpeng.2013.03.010 URL |
| [22] |
doi: 10.1016/j.compstruct.2024.118565 URL |
| [23] |
doi: 10.1016/j.ijimpeng.2016.04.015 URL |
| [24] |
doi: 10.1016/j.compstruct.2021.115016 URL |
| [25] |
doi: 10.1016/j.engstruct.2024.118213 URL |
| [26] |
|
| [27] |
HIBBITT, KARLSSON & SORENSEN, Inc. ABAQUS Version 6.14 Documentation[M]. Providence, RI: Dassault Systemes Simulia Corp, 2019.
|
| [28] |
doi: 10.1063/1.1658021 URL |
| [1] | SHI Qi, MAO Yunsheng, SHUI Jinpeng, CHEN Liuyi, LIANG Qiyu, SONG Lifei. Improvement and Optimization of Rectangular Closed-loop Magnetic Array Adsorption Module for Wall-climbing Robots [J]. Acta Armamentarii, 2025, 46(9): 241013-. |
| [2] | ZHEN Hong, XIAO Lijun, DU Chengxin, SONG Weidong. Damage Modes of Ultra-High Molecular Weight Polyethylene Fiber Composite Plates under Ballistic Impact Conditions [J]. Acta Armamentarii, 2025, 46(7): 240725-. |
| [3] | WANG Yizhen, YIN Jianping, ZHANG Xuepeng, YI Jianya, LI Xudong. A Prediction Model for Dynamic Penetration of Shaped Charge Jet [J]. Acta Armamentarii, 2025, 46(6): 240932-. |
| [4] | MAO Guanghui, WANG Cheng, WANG Wanli, XU Wenlong. Research on the Impact Resistance of Deformation-controllable Concave Honeycomb Structures [J]. Acta Armamentarii, 2025, 46(3): 240037-. |
| [5] | ZHANG Cong, LU Junhua, YUE Mingkai. Design and Simulation of Bionic Composite Shock Absorption Structure for Imaging Fuze [J]. Acta Armamentarii, 2025, 46(2): 240021-. |
| [6] | YANG Haowei, WANG Junlong, MIAO Zhenwei, KANG Yue, WEI Yanpeng. Research on the Application of Shear-stiffening Gel Modified Foam Materials in Ballistic Helmets [J]. Acta Armamentarii, 2025, 46(11): 250225-. |
| [7] | YI Xiaofei, PENG Kefeng, CHANG Baixue, ZHANG Yuanrui, LIU Jiagui, ZHENG Zhijun. Dynamic Response of Biomimetic Gradient Double Corrugated Structure under Simulated Blast Load [J]. Acta Armamentarii, 2025, 46(10): 250344-. |
| [8] | LI Xianghui, ZHANG Xingyu, HU Jiahao, LIU Yang, MA Bohan, WANG Yonggang, JIANG Zhaoxiu. Study on the Large Plasticity Model and Fracture Initiation Model Parameters of AISI 4340 Steel Targets [J]. Acta Armamentarii, 2025, 46(1): 231210-. |
| [9] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation,Damage and Failure Behaviors of High-entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 2025, 46(1): 231183-. |
| [10] | ZUO Mingshuo, XU Yuxin, LI Yongpeng, LI Xudong, GUO Delong, YANG Xiang. Dynamic Response of Directional Blast Relief Container Structure for Civil Aircraft under Internal Explosive Loading [J]. Acta Armamentarii, 2024, 45(7): 2383-2392. |
| [11] | ZHANG An, LI Changsheng, ZHANG He, MA Shaojie, YANG Benqiang. Experimental Study on IPM for Buffering and Energy Absorption [J]. Acta Armamentarii, 2024, 45(7): 2260-2269. |
| [12] | CAO Luqing, QIAO Yang, XIE Jing, CHEN Pengwan. Study on Compressive Mechanical Properties of Graphene Aerogel [J]. Acta Armamentarii, 2024, 45(7): 2364-2373. |
| [13] | YAN Song, JIANG Yi, DENG Yueguang, WEN Xianghua. Prediction and Optimization Method of Energy Absorption Characteristics of Thin-walled Metal Circular Pipe Filled with Aluminum Foam [J]. Acta Armamentarii, 2024, 45(6): 1954-1964. |
| [14] | JIA Jingjing, ZHANG Zhimin, YU Jianmin, XUE Yong, WU Ang. Numerical Simulation of Uniform Extrusion Forming and Die Structure Optimization of Lightweight Empennage-shaped Component Based on Response Surface Method [J]. Acta Armamentarii, 2024, 45(6): 1824-1839. |
| [15] | JIN Zehua, LIU Qingyang, MA Wenchao, MENG Junhu. Design of Anti-impact Structure with Novel Star-shaped Negative Poisson’s Ratio and Research on Water-entry Impact [J]. Acta Armamentarii, 2024, 45(5): 1497-1513. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||