
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (10): 250529-.doi: 10.12382/bgxb.2025.0529
Previous Articles Next Articles
ZHANG Lizhong1, REN Huilan1, LI Jianqiao1,*(
), LI Wei2
Received:2025-06-23
Online:2025-11-05
Contact:
LI Jianqiao
ZHANG Lizhong, REN Huilan, LI Jianqiao, LI Wei. The Mechanical Properties and Penetration Characteristics of Al/W Reactive Materials[J]. Acta Armamentarii, 2025, 46(10): 250529-.
Add to citation manager EndNote|Ris|BibTeX
| 材料 | 尺寸/ mm×mm | 密度/ (kg·m-3) | 质量/ g | 弹性模量/ GPa |
|---|---|---|---|---|
| Al/W | φ5×5 | 4950 | 0.49 | 2.07 |
| Ti | φ5×5 | 4500 | 0.44 | 105 |
Table 1 Mechanical properties parameters of the fragment
| 材料 | 尺寸/ mm×mm | 密度/ (kg·m-3) | 质量/ g | 弹性模量/ GPa |
|---|---|---|---|---|
| Al/W | φ5×5 | 4950 | 0.49 | 2.07 |
| Ti | φ5×5 | 4500 | 0.44 | 105 |
| 材料 | 尺寸/ mm×mm×mm | 密度/ (kg·m-3) | 弹性 模量/GPa |
|---|---|---|---|
| Q235钢 | 500×500×5 | 7850 | 206 |
Table 2 Mechanical properties parameters of the target plate
| 材料 | 尺寸/ mm×mm×mm | 密度/ (kg·m-3) | 弹性 模量/GPa |
|---|---|---|---|
| Q235钢 | 500×500×5 | 7850 | 206 |
| 材料 | 应变率/s-1 | 屈服强度/MPa | 塑性硬化模量/MPa |
|---|---|---|---|
| 1190 | 135.5 | 302.1 | |
| Al/W | 1580 | 162.0 | 156.6 |
| 1890 | 165.9 | 148.7 | |
| 2540 | 186.7 | - |
Table 3 Dynamic mechanical properties of Al/W reactive materials
| 材料 | 应变率/s-1 | 屈服强度/MPa | 塑性硬化模量/MPa |
|---|---|---|---|
| 1190 | 135.5 | 302.1 | |
| Al/W | 1580 | 162.0 | 156.6 |
| 1890 | 165.9 | 148.7 | |
| 2540 | 186.7 | - |
| 破片 类型 | 撞击速度/ (m·s-1) | 撞击 动能/J | 弹坑 深度/mm | 弹坑 直径/mm |
|---|---|---|---|---|
| Al/W | 535 | 69.6 | 0.38 | 5.21 |
| Al/W | 588 | 84.0 | 0.72 | 5.38 |
| Al/W | 678 | 111.7 | 0.97 | 5.63 |
| Al/W | 758 | 139.6 | 2.14 | 6.02 |
| Al/W | 1189 | 343.5 | 5.30 | 8.14 |
| Al/W | 1333 | 431.8 | 6.09 | 9.21 |
| Al/W | 1435 | 500.4 | 穿透 | 9.92 |
| Al/W | 1498 | 545.3 | 穿透 | 9.81 |
| Al/W | 1796 | 790.2 | 穿透 | 9.62 |
| Ti | 884 | 171.9 | 1.86 | 6.88 |
| Ti | 1136 | 283.9 | 2.66 | 8.04 |
| Ti | 1343 | 396.8 | 3.97 | 8.67 |
| Ti | 1630 | 584.5 | 4.84 | 8.90 |
Table 4 Experimental results of fragment penetrating steel target
| 破片 类型 | 撞击速度/ (m·s-1) | 撞击 动能/J | 弹坑 深度/mm | 弹坑 直径/mm |
|---|---|---|---|---|
| Al/W | 535 | 69.6 | 0.38 | 5.21 |
| Al/W | 588 | 84.0 | 0.72 | 5.38 |
| Al/W | 678 | 111.7 | 0.97 | 5.63 |
| Al/W | 758 | 139.6 | 2.14 | 6.02 |
| Al/W | 1189 | 343.5 | 5.30 | 8.14 |
| Al/W | 1333 | 431.8 | 6.09 | 9.21 |
| Al/W | 1435 | 500.4 | 穿透 | 9.92 |
| Al/W | 1498 | 545.3 | 穿透 | 9.81 |
| Al/W | 1796 | 790.2 | 穿透 | 9.62 |
| Ti | 884 | 171.9 | 1.86 | 6.88 |
| Ti | 1136 | 283.9 | 2.66 | 8.04 |
| Ti | 1343 | 396.8 | 3.97 | 8.67 |
| Ti | 1630 | 584.5 | 4.84 | 8.90 |
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Dp/mm | 5 | Dt | 1.9Dp |
| ρp/(kg·m-3) | 4950 | ρt/(kg·m-3) | 4500 |
| mp/g | 0.49 | mt/g | 0.44 |
| hp/mm | 5 | ht/mm | 5 |
| Cp/(m·s-1) | 646 | Ct/(m·s-1) | 4569 |
| sp | 1.28 | st | 1.49 |
| Gt/GPa | 77 | ΔH/(kJ/g) | 11.21 |
| KC/(MPa·m0.5) | 18.2 | τud/MPa | 500 |
Table 5 Calculation parameters
| 参数 | 数值 | 参数 | 数值 |
|---|---|---|---|
| Dp/mm | 5 | Dt | 1.9Dp |
| ρp/(kg·m-3) | 4950 | ρt/(kg·m-3) | 4500 |
| mp/g | 0.49 | mt/g | 0.44 |
| hp/mm | 5 | ht/mm | 5 |
| Cp/(m·s-1) | 646 | Ct/(m·s-1) | 4569 |
| sp | 1.28 | st | 1.49 |
| Gt/GPa | 77 | ΔH/(kJ/g) | 11.21 |
| KC/(MPa·m0.5) | 18.2 | τud/MPa | 500 |
| 数据来源 | 破片材料 | 弹道极限速度/(m·s-1) |
|---|---|---|
| 实验值 | Al/W | 1333~1435 |
| 计算值 | Al/W | 1355 |
Table 6 Calculation results and experimental results
| 数据来源 | 破片材料 | 弹道极限速度/(m·s-1) |
|---|---|---|
| 实验值 | Al/W | 1333~1435 |
| 计算值 | Al/W | 1355 |
| [1] |
|
| [2] |
李尉, 任会兰, 宁建国, 等. Al/PTFE活性材料的动态力学行为和撞击点火特性[J]. 含能材料, 2020, 28(1): 38-45.
|
|
|
|
| [3] |
doi: 10.1002/prep.v42.6 URL |
| [4] |
葛超, 田超, 乌布力艾散·麦麦提图尔荪, 等. 基于气炮实验的PTFE/Al复合材料冲击反应阈值[J]. 爆炸与冲击, 2018, 38(1): 1-8.
|
|
doi: 10.1023/A:1014005014138 |
|
| [5] |
doi: 10.1016/j.ijimpeng.2008.07.041 URL |
| [6] |
|
| [7] |
doi: 10.1016/j.apsusc.2014.07.112 URL |
| [8] |
黄亨建, 黄辉, 阳世清, 等. 毁伤增强型破片探索研究[J]. 含能材料, 2007, 15(6): 566-569.
|
|
|
|
| [9] |
doi: 10.1088/0953-8984/21/28/285401 URL |
| [10] |
doi: 10.1016/S1003-6326(22)66138-7 URL |
| [11] |
赵涵, 任会兰, 宁建国. 铝纤维增强铝/聚四氟乙烯活性材料力学性能及反应特性[J]. 兵工学报, 2024, 45(5):1573-1581.
doi: 10.12382/bgxb.2023.0101 |
|
doi: 10.12382/bgxb.2023.0101 |
|
| [12] |
doi: 10.3390/polym14071415 URL |
| [13] |
doi: 10.1016/j.jallcom.2022.168022 URL |
| [14] |
doi: 10.1016/j.jallcom.2024.176703 URL |
| [15] |
doi: 10.1016/j.combustflame.2014.12.002 URL |
| [16] |
doi: 10.3390/ma11112267 URL |
| [17] |
doi: 10.1063/1.4967340 URL |
| [18] |
宋超慧, 任会兰, 李尉, 等. 不同W含量Al/W活性材料的冲击压缩特性[J]. 高压物理学报, 2021, 35(6): 125-133.
|
|
|
|
| [19] |
doi: 10.1016/j.actamat.2011.10.027 URL |
| [20] |
doi: 10.1016/j.euromechsol.2020.104137 URL |
| [21] |
|
| [22] |
doi: 10.1016/j.ijimpeng.2017.02.010 URL |
| [23] |
钱伟长, 穿甲力学[M]. 北京: 国防工业出版社, 1984.
|
|
|
|
| [24] |
刘青, 杨华楠, 廖雪松, 等. 撞靶速度对活性破片释能规律的影响[J]. 兵器装备工程学报, 2021, 42(11):47-51.
|
|
|
|
| [25] |
|
| [26] |
doi: 10.1177/1548512915590611 URL |
| [27] |
doi: 10.1016/j.dt.2021.03.022 |
| [28] |
张庆明, 刘彦, 黄风雷, 等. 材料的动力学行为[M]. 北京: 国防工业出版社, 2006.
|
|
|
|
| [29] |
王在成, 徐祎, 姜春兰, 等. 钨锆钛活性破片对间隔靶的毁伤效应[J]. 兵工学报, 2023, 44(12): 3862-3871.
doi: 10.12382/bgxb.2023.0289 |
|
doi: 10.12382/bgxb.2023.0289 |
|
| [30] |
doi: 10.1016/j.jallcom.2024.176703 URL |
| [31] |
pmid: 9408579 |
| [32] |
doi: 10.1016/j.ijrmhm.2010.04.007 URL |
| [33] |
周晟, 郭萌萌, 张甲浩, 等. 活性破片作用后效靶板耦合能量分布特征[J]. 兵工学报, 2024(S1): 81-88.
doi: 10.12382/bgxb.2024.0526 |
|
doi: 10.12382/bgxb.2024.0526 |
|
| [34] |
doi: 10.1016/j.dt.2020.12.008 |
| [35] |
doi: 10.1016/j.combustflame.2024.113481 URL |
| [36] |
doi: 10.1016/j.ijimpeng.2016.05.007 URL |
| [37] |
doi: 10.1016/j.msea.2016.11.012 URL |
| [38] |
汤文辉, 张若棋, 胡金彪, 等. 冲击温度的近似计算方法[J]. 力学进展, 1998(4):479-487.
|
|
|
|
| [39] |
|
| [40] |
|
| [41] |
|
| [1] | FU Lu, HUANG Fenglei. Explosive Energy Release Characteristics of Two HMX-based Thermobaric Explosives with different Bonder Systems [J]. Acta Armamentarii, 2025, 46(S1): 250312-. |
| [2] | YU Yang, CHEN Fanxiu, SHEN Jun, LIU Rui, ZHOU Jinqiang, WU Chengcheng. Numerical Simulation of Mechanical Properties and Force Chain Evolution of Granular System during Densification Process [J]. Acta Armamentarii, 2025, 46(S1): 250690-. |
| [3] | CHEN Ling, LIANG Hongye, WANG Shouyu, WANG Lei, LIU Qiong, NAN Fengqiang, DU Ping, HE Weidong. Mechanical and Combustion Characteristics of Ultra-thick Nitroguanidine Gun Propellant [J]. Acta Armamentarii, 2025, 46(9): 241000-. |
| [4] | GONG Xiaohui, RAO Guoning, ZHOU Rudong, ZHU Xiaofeng, KONG Decheng, MENG Chenyu. Test and Numerical Simulation of Penetration Resistance of Polyurea/fiber Composite Structures [J]. Acta Armamentarii, 2025, 46(7): 240709-. |
| [5] | HE Jin, YANG Bin, WANG Yingchun, CHI Hongxiao, ZHOU Jian, CHENG Xingwang. Effect of Cryogenic Treatment Time on Microstructure and Mechanical Properties of a Low-carbon High-alloy Martensite Steel [J]. Acta Armamentarii, 2025, 46(6): 240532-. |
| [6] | GAO Pengfei, FAN Jikang, ZHANG Jian, YANG Dongqing, ZHANG Xiaoyong, WANG Kehong. The Influence of Interlayer Temperature on Microstructure and Properties of High Nitrogen Steel Fabricated by Arc Additive Manufacturing [J]. Acta Armamentarii, 2025, 46(4): 240035-. |
| [7] | ZHANG Wei, ZHANG Jie. Effect of Y3Al5O12 on Microstructure and Mechanical Properties of B4C Ceramics Prepared by Hot-press Sintering [J]. Acta Armamentarii, 2025, 46(3): 240117-. |
| [8] | YANG Fan, QIN Zishang, LI Dacheng, HU Zhaocai, XIE Weihua, MENG Songhe. Static and Dynamic Mechanical Behaviors of Bouligand-type Biomimetic Composite Materials [J]. Acta Armamentarii, 2025, 46(2): 240118-. |
| [9] | FU Liheng, YAO Xiangyang, WANG Luqing, MA Honghao, QI Feng. The Dynamic Mechanical Properties and Constitutive Model of Fiber-reinforced Polyurea Materials [J]. Acta Armamentarii, 2025, 46(11): 250073-. |
| [10] | GUO Dongyang, ZHAO Dongzhi, LIU De, ZHANG Shutong, GAO Muzhu, ZHAO Shuang. Energy Dissipation Mechanism of Fragments Subjected to the Strength-toughness Synergy of Shell Materials [J]. Acta Armamentarii, 2025, 46(11): 250093-. |
| [11] | LING Jing, LIANG Yanxiang, JING Lin. Dynamic Impact Mechanics Response and Deformation Mechanisms of Al15(CoCrFeNi)85 High-entropy Alloy [J]. Acta Armamentarii, 2025, 46(10): 250499-. |
| [12] | MA Li, FAN Jikang, ZHANG Jian, CONG Baoqiang, YANG Dongqing, PENG Yong, WANG Kehong. Effect of Ultrasonic Frequency Pulse Current Superposition on the Microstructure and Properties of GMA Additive Manufactured High Nitrogen Steel [J]. Acta Armamentarii, 2025, 46(1): 231097-. |
| [13] | LI Xianghui, ZHANG Xingyu, HU Jiahao, LIU Yang, MA Bohan, WANG Yonggang, JIANG Zhaoxiu. Study on the Large Plasticity Model and Fracture Initiation Model Parameters of AISI 4340 Steel Targets [J]. Acta Armamentarii, 2025, 46(1): 231210-. |
| [14] | GAO Maoguo, LIU Rui, GUO Yansong, GENG Hengheng, CHEN Pengwan. Dynamic Deformation,Damage and Failure Behaviors of High-entropy HfZrTiTaAl Alloy [J]. Acta Armamentarii, 2025, 46(1): 231183-. |
| [15] | XU Yueyue, ZHANG Xiangrong, GAO Jiale, LIU Zhanwei, MIAO Feichao, LIU Pan, ZHOU Lin. Mechanical Properties and Failure Criteria of DNP-based Melt-cast Explosives [J]. Acta Armamentarii, 2024, 45(9): 3114-3124. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||