
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (S1): 250437-.doi: 10.12382/bgxb.2025.0437
Previous Articles Next Articles
SI Dongya, WU Bin*(
), LUO Tianfang, LI Kun, ZHOU Ziming
Received:2025-06-03
Online:2025-11-06
Contact:
WU Bin
SI Dongya, WU Bin, LUO Tianfang, LI Kun, ZHOU Ziming. Development Concepts and Technical Challenges of Digital Twin Gun Barrel Focused on Barrel Burst Warning[J]. Acta Armamentarii, 2025, 46(S1): 250437-.
Add to citation manager EndNote|Ris|BibTeX
| 方法 | 优势 | 缺点 |
|---|---|---|
| 有扩展有限元法 | 1.无需重划网格 2.可以模拟任意方向路径 3.可以解决不连续几何问题 4.具有较好的精度和收敛性 | 1.富集函数收敛耗时较长 2.模拟复杂多个裂纹尚存在局限性 3.计算精度较低 |
| 粘聚力模型法 | 1.使用方便简单 2.计算时间较少 3.计算结果精度较高 | 1.网格敏感性 2.需要提前确定裂纹路径 3.需要预制裂纹 |
| 虚拟裂纹闭合技术 | 1.使用方便简单 2.准确计算应变能释放率 | 1.网格敏感性 2.需要提前确定裂纹路径 3.需要预制裂纹 4.计算时间较长、精度较低 |
Table 1 Comparison of finite element methods for crack propagation[17]
| 方法 | 优势 | 缺点 |
|---|---|---|
| 有扩展有限元法 | 1.无需重划网格 2.可以模拟任意方向路径 3.可以解决不连续几何问题 4.具有较好的精度和收敛性 | 1.富集函数收敛耗时较长 2.模拟复杂多个裂纹尚存在局限性 3.计算精度较低 |
| 粘聚力模型法 | 1.使用方便简单 2.计算时间较少 3.计算结果精度较高 | 1.网格敏感性 2.需要提前确定裂纹路径 3.需要预制裂纹 |
| 虚拟裂纹闭合技术 | 1.使用方便简单 2.准确计算应变能释放率 | 1.网格敏感性 2.需要提前确定裂纹路径 3.需要预制裂纹 4.计算时间较长、精度较低 |
| [1] |
李磊, 杜度, 仝哲, 等. 国外舰艇装备数字孪生技术应用研究[J]. 舰船科学技术, 2024, 46(19):185-189.
|
|
|
|
| [2] |
盛碧琦, 孙盛智, 刘玉, 等. 数字孪生技术在模拟训练系统中的应用研究[J]. 战术导弹技术, 2024(4):152-160.
|
|
|
|
| [3] |
熊宇涵, 李雄. 数字孪生战场:概念、架构与技术[J]. 系统工程与电子技术, 2025, 47(1):141-152.
doi: 10.12305/j.issn.1001-506X.2025.01.15 |
|
|
|
| [4] |
洪东跑, 方伟光, 李浩, 等. 面向智能运维的装备数字孪生体构建与应用研究[J]. 宇航学报, 2024, 45(6):854-865.
|
|
|
|
| [5] |
顾晓飞, 张亮, 彭小明, 等. 数字孪生技术在导弹战斗部领域的应用与展望[J]. 新技术新工艺, 2024(9):1-7.
|
|
|
|
| [6] |
曹渊, 邱志明, 郝坤鹏, 等. 小口径转管炮数字化技术发展综述[J]. 海军工程大学学报, 2023, 35(6):6-10.
|
|
|
|
| [7] |
闫仲秋, 陈义平, 邵奇, 等. 基于数字工程的武器装备发展研究[J]. 兵工自动化, 2023, 42(5):92-96.
|
|
|
|
| [8] |
朱金达, 陈佳辉, 秦志英, 等. 基于虚拟现实与数字孪生技术的自行火炮辅助维修系统[J]. 数字印刷, 2022(6):117-127.
|
|
|
|
| [9] |
王帅, 王亚彬, 岳帅, 等. 自行火炮维修保障系统数字孪生体仿真模型[J]. 火炮发射与控制学报, 2023, 172(2):8-13,45
|
|
|
|
| [10] |
马佳瑞. 基于数字孪生的转管火炮发射状态监测系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
|
|
|
|
| [11] |
王宏伟, 刘文军, 邓伟倩, 等. 基于模型的复杂装备数字孪生体建模方法[J]. 新技术新工艺, 2024(5):51-59.
|
|
|
|
| [12] |
王韫泽, 王树山, 魏平亮, 等. 穿甲弹异物阻滞膛炸机理数值仿真分析[J]. 兵工学报, 2018, 39(5):859-866.
doi: 10.3969/j.issn.1000-1093.2018.05.004 |
|
|
|
| [13] |
毛保全, 赵其进, 白向华, 等. 火炮身管延寿技术研究现状与展望[J]. 兵工学报, 2023, 44(3) :638-655.
doi: 10.12382/bgxb.2021.0787 |
|
doi: 10.12382/bgxb.2021.0787 |
|
| [14] |
许耀峰, 单春来, 刘朋科, 等. 火炮身管寿终机理及寿命预测方法研究综述[J]. 火炮发射与控制学报, 2020, 41(3):89-94,101.
|
|
|
|
| [15] |
聂林涛. 某型高射炮杀伤榴弹膛炸问题研究[J]. 舰船电子工程, 2020, 40(12):119-121.
|
|
|
|
| [16] |
吴斌, 司东亚, 郑靖, 等. 基于应变的火炮身管健康监测和剩余寿命评估的可行性研究[J]. 兵器装备工程学报, 2024, 45(1):49-58.
|
|
|
|
| [17] |
苏玉昆, 马涛, 赵晓鑫, 等. 基于有限元技术的疲劳裂纹扩展方法研究进展[J]. 力学进展, 2024, 54(2):308-343.
|
|
|
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3):023981.
|
|
|
| [1] | LIU Hanwen, FU Xiaolong, WANG Jiangning, MENG Saiqin. Research on Fracture Failure of NEPE Propellant Based on Peridynamics [J]. Acta Armamentarii, 2025, 46(7): 240613-. |
| [2] | GAO Feng, ZHAO Ning, ZHUANG Cunbo, YU Dongmei. Digital Twin-driven Customized Individual Equipment Packing Production Optimization [J]. Acta Armamentarii, 2025, 46(4): 240200-. |
| [3] | XU Jing, HU Chundong, LU Hengchang, DENG Yahui, XUE Jun, WEI Xicheng, DONG Han. Research on Friction Behavior of Environmentally Friendly Plating for Gun Barrels [J]. Acta Armamentarii, 2024, 45(2): 651-661. |
| [4] | WANG Jilong, WEN Yaoke, LIU Dongxu, WANG Huicheng, SHEN Zhouyu, LUO Xiaohao. Mechanical Response of Body Armor during Rifle Bullet Penetration Based on Bond-based Peridynamic Method [J]. Acta Armamentarii, 2024, 45(11): 4094-4105. |
| [5] | GE Zhongyu, ZHOU Kedong, LU Ye, LIU Jinhao. Stress States of Anisotropic Material Gun Barrel by Firing the Projectiles with Different Jacket Materials [J]. Acta Armamentarii, 2024, 45(11): 4119-4132. |
| [6] | HUANG Zhengui, WANG Hao, CAI Xiaowei, LIU Xiangyan, CHEN Zhihua, QIN Jian, HAO Xulong. Influence of Velocity on the Cavity Flow Characteristics of Vertical Ice-breaking Water Entry of a Projectile [J]. Acta Armamentarii, 2024, 45(10): 3371-3384. |
| [7] | LI Zhengjun, DENG Changming. A Digital Twin System Model of Unmanned Cooperative Game [J]. Acta Armamentarii, 2023, 44(S2): 209-222. |
| [8] | MA Jingqi, YU Qiwen, HUANG Ping, WANG Wei, LI Youwei. A Real-time Compression Algorithm of Color Point Cloud Streams for Environmental Scanning [J]. Acta Armamentarii, 2023, 44(S2): 167-177. |
| [9] | YANG Shuo, DU Tianwei, ZHANG Xiaopeng, MA Liang, ZHANG Guichang. Effect of Foreign Object Damage on Vibration Fatigue Crack Propagation of Blades [J]. Acta Armamentarii, 2023, 44(6): 1713-1721. |
| [10] | XU Yaofeng, YANG Diao, LIU Pengke, CHEN Qi, GUO Junhang, WANG Jun. Study on Strength Degradation Mechanism of Material on Inner Bore Surface of Gun Barrel [J]. Acta Armamentarii, 2023, 44(5): 1288-1295. |
| [11] | MAO Baoquan, ZHAO Qijin, BAI Xianghua, WANG Zhiqian, ZHU Rui, CHEN Chunlin. Review and Prospect of Life Extension Technology for Gun Barrels [J]. Acta Armamentarii, 2023, 44(3): 638-654. |
| [12] | MIAO Run, WANG Wei-li, SONG Yang. Research on Relationship between Crack Propagation Speed of TC4 Alloy and Loading Speed under Mode II Dynamic Loading [J]. Acta Armamentarii, 2016, 37(12): 2331-2339. |
| [13] | YI Huai-jun, LIU Ning, ZHANG Xiang-yan, DING Chuan-jun. Prediction of Gun Barrel Wear Based on Improved Non-equal Interval Grey Model and BP Neural Network [J]. Acta Armamentarii, 2016, 37(12): 2220-2225. |
| [14] | XU Ning, WU Yong-hai, WANG Yong-juan, XU Cheng. Barrel Life Prediction of Rotating Barrels Machine Gun Based on Fatigue Damage of Chromium-steel Interface [J]. Acta Armamentarii, 2016, 37(10): 1926-1933. |
| [15] | GAO Hong-li, ZHANG Li-bin, JIANG Wei, ZHOU Yin. Nature Frequency Tracking System for the Electromagnetic Resonance Fatigue Crack Propagation Test [J]. Acta Armamentarii, 2013, 34(7): 896-903. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||