
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (S1): 250413-.doi: 10.12382/bgxb.2025.0413
Previous Articles Next Articles
ZHAO Zhijie1,*(
), SHEN Shiqi1, YING Zhanfeng2, LI Keting1, LI Ruixing1, TANG Shiwei1
Received:2025-05-27
Online:2025-11-06
Contact:
ZHAO Zhijie
ZHAO Zhijie, SHEN Shiqi, YING Zhanfeng, LI Keting, LI Ruixing, TANG Shiwei. Aerial Vehicle Detection based on Multispectral Feature Fusion in Complex Scene[J]. Acta Armamentarii, 2025, 46(S1): 250413-.
Add to citation manager EndNote|Ris|BibTeX
| 模态 | 白天 | 夜晚 | 深夜 |
|---|---|---|---|
| RGB 模态 | | | |
| IR 模态 | | | |
Table 1 Some example annotated images of DroneVehicle dataset
| 模态 | 白天 | 夜晚 | 深夜 |
|---|---|---|---|
| RGB 模态 | | | |
| IR 模态 | | | |
| 参数 | 设置 |
|---|---|
| Epochs | 300 |
| Batch | 24 |
| Workers | 4 |
| Imgsz | 640 |
| Optimizer | SGD |
| Lrf | 0.01 |
| lr0 | 0.1 |
| Momentum | 0.973 |
Table 2 Training parameter settings
| 参数 | 设置 |
|---|---|
| Epochs | 300 |
| Batch | 24 |
| Workers | 4 |
| Imgsz | 640 |
| Optimizer | SGD |
| Lrf | 0.01 |
| lr0 | 0.1 |
| Momentum | 0.973 |
| 模型 | +MSGF | +GLGF | +CMB | mAP0.5/ % | mAP0.5:0.95/ % | Para/M | GFLOPs |
|---|---|---|---|---|---|---|---|
| A | 74.8 | 52.9 | 2.266 | 6.5 | |||
| B | √ | 81.4 | 61.7 | 4.491 | 12.7 | ||
| C | √ | √ | 82.8 | 62.8 | 5.337 | 16.5 | |
| D | √ | √ | √ | 83.4 | 64.0 | 5.424 | 16.7 |
Table 3 Ablation experiment
| 模型 | +MSGF | +GLGF | +CMB | mAP0.5/ % | mAP0.5:0.95/ % | Para/M | GFLOPs |
|---|---|---|---|---|---|---|---|
| A | 74.8 | 52.9 | 2.266 | 6.5 | |||
| B | √ | 81.4 | 61.7 | 4.491 | 12.7 | ||
| C | √ | √ | 82.8 | 62.8 | 5.337 | 16.5 | |
| D | √ | √ | √ | 83.4 | 64.0 | 5.424 | 16.7 |
| 模型 | 模态 | 汽车 | 卡车 | 货车 | 公共汽车 | 面包车 | mAP0.5/% | mAP0.5:0.95/% |
|---|---|---|---|---|---|---|---|---|
| YOLOv10n[ | RGB | 96.5 | 74.2 | 53.7 | 94.9 | 54.8 | 74.8 | 52.9 |
| YOLOv10n | IR | 98.4 | 78.4 | 66.7 | 95.4 | 60.7 | 79.9 | 59.7 |
| YOLOv10n | RGB+IR | 98.6 | 82.3 | 66.6 | 95.8 | 59.6 | 80.6 | 61.0 |
| YOLOv5n | RGB+IR | 98.4 | 79.7 | 64.6 | 95.7 | 60.9 | 79.9 | 60.0 |
| YOLOv8n | RGB+IR | 98.5 | 81.0 | 64.0 | 96.0 | 61.1 | 80.1 | 60.6 |
| Trdetr[ | RGB+IR | 94.0 | 71.3 | 57.5 | 89.3 | 51.0 | 72.6 | 48.6 |
| Mamba[ | RGB+IR | 98.3 | 79.9 | 66.4 | 96.1 | 58.7 | 79.9 | 59.6 |
| C2Former[ | RGB+IR | 90.2 | 68.3 | 64.4 | 89.8 | 58.5 | 74.2 | 56.9 |
| TSDADet[ | RGB+IR | 89.9 | 67.9 | 63.7 | 89.8 | 54.0 | 73.1 | 55.4 |
| MBNet[ | RGB+IR | 90.1 | 64.4 | 62.4 | 88.8 | 53.6 | 71.9 | 54.2 |
| Ours | RGB+IR | 98.7 | 85.1 | 71.0 | 96.2 | 66.4 | 83.4 | 64.0 |
Table 4 Comparison experiment
| 模型 | 模态 | 汽车 | 卡车 | 货车 | 公共汽车 | 面包车 | mAP0.5/% | mAP0.5:0.95/% |
|---|---|---|---|---|---|---|---|---|
| YOLOv10n[ | RGB | 96.5 | 74.2 | 53.7 | 94.9 | 54.8 | 74.8 | 52.9 |
| YOLOv10n | IR | 98.4 | 78.4 | 66.7 | 95.4 | 60.7 | 79.9 | 59.7 |
| YOLOv10n | RGB+IR | 98.6 | 82.3 | 66.6 | 95.8 | 59.6 | 80.6 | 61.0 |
| YOLOv5n | RGB+IR | 98.4 | 79.7 | 64.6 | 95.7 | 60.9 | 79.9 | 60.0 |
| YOLOv8n | RGB+IR | 98.5 | 81.0 | 64.0 | 96.0 | 61.1 | 80.1 | 60.6 |
| Trdetr[ | RGB+IR | 94.0 | 71.3 | 57.5 | 89.3 | 51.0 | 72.6 | 48.6 |
| Mamba[ | RGB+IR | 98.3 | 79.9 | 66.4 | 96.1 | 58.7 | 79.9 | 59.6 |
| C2Former[ | RGB+IR | 90.2 | 68.3 | 64.4 | 89.8 | 58.5 | 74.2 | 56.9 |
| TSDADet[ | RGB+IR | 89.9 | 67.9 | 63.7 | 89.8 | 54.0 | 73.1 | 55.4 |
| MBNet[ | RGB+IR | 90.1 | 64.4 | 62.4 | 88.8 | 53.6 | 71.9 | 54.2 |
| Ours | RGB+IR | 98.7 | 85.1 | 71.0 | 96.2 | 66.4 | 83.4 | 64.0 |
| 时间 | 模态 | 场景1 | 场景2 | 场景3 | 场景4 |
|---|---|---|---|---|---|
| 夜晚 | RGB模态 | | | | |
| IR模态 | | | | | |
| 白天 | RGB模态 | | | | |
| IR模态 | | | | |
Table 5 Visualization of target detection results
| 时间 | 模态 | 场景1 | 场景2 | 场景3 | 场景4 |
|---|---|---|---|---|---|
| 夜晚 | RGB模态 | | | | |
| IR模态 | | | | | |
| 白天 | RGB模态 | | | | |
| IR模态 | | | | |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
江波, 屈若锟, 李彦冬, 等. 基于深度学习的无人机航拍目标检测研究综述[J]. 航空学报, 2021, 42(4):137-151.
|
|
|
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
张宸嘉, 朱磊, 俞璐. 卷积神经网络中的注意力机制综述[J]. 计算机工程与应用, 2021, 57(20):64-72.
doi: 10.3778/j.issn.1002-8331.2105-0135 |
|
|
|
| [16] |
解宇敏, 张浪文, 余孝源, 等. 可见光-红外特征交互与融合的 YOLOv5目标检测算法[J]. 控制理论与应用, 2024, 41(5):914-922.
|
|
|
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [1] | LI Keting, ZHAO Zijie, YING Zhanfeng, SHEN Shiqi. Cross-layer Dynamic Detection Network for Small Target Detection in Aerial Photography [J]. Acta Armamentarii, 2025, 46(S1): 250399-. |
| [2] | LIU Hui, LI Mingyi, HAN Lijin, LIU Baoshuai. Research on Infrared Target Detection and Tracking in Dark Environments [J]. Acta Armamentarii, 2025, 46(8): 240081-. |
| [3] | SHEN Ying, ZHANG Shuo, WANG Shu, SU Yun, XUE Fang, HUANG Feng. A Method for Detecting the Camouflaged Small Target in Complex Scene Using Airborne Polarization Remote Sensing [J]. Acta Armamentarii, 2025, 46(7): 240797-. |
| [4] | DONG Yi, KONG Xiaofang, LUO Hong’e, WAN Gang, XIA Yan, WAN Minjie. Lightweight Transmedia High-speed Small Target Detection Method Based on Coordinate Attention Mechanism [J]. Acta Armamentarii, 2025, 46(6): 240380-. |
| [5] | XU Tongle, WANG Zhaochen, LIU Fang, XIAO Yujie, HE Yi, DOU Jihua. Aircraft Flight Corridor Conflict Detection Method Based on Multi-view Geometry [J]. Acta Armamentarii, 2025, 46(5): 240806-. |
| [6] | GUI Fan, SHI Zhangsong, SUN Shiyan, YING Wenjian, HU Weiqiang, XU Huihui, WU Zhonghong, HU Qingping, ZHANG Jun. Detection and Tracking of Water Columns at Marine Impact Points Based on Dynamic Features [J]. Acta Armamentarii, 2025, 46(5): 240918-. |
| [7] | FENG Yingbin, GUO Xiaozun, YAN Jiahua. Small UVA Target Detection Algorithm Based on Multi-scale Attention Mechanism [J]. Acta Armamentarii, 2025, 46(1): 231124-. |
| [8] | YAO Yu, SONG Chunlin, SHAO Jiangqi. Real-time Detection and Localization Algorithm for Military Vehicles in Drone Aerial Photography [J]. Acta Armamentarii, 2024, 45(S1): 354-360. |
| [9] | ZHAO Zhixin, CAO Yulong, CHEN Yuanshuai, ZHOU Huilin, WANG Yuhao. A Time-invariant Sparse Model and a Deep Unrolling Network for Target Detection of Passive Radar [J]. Acta Armamentarii, 2024, 45(8): 2806-2816. |
| [10] | CHANG Tianqing, ZHANG Jie, ZHAO Liyang, HAN Bin, ZHANG Lei. Research on Armored Vehicle Detection Algorithm Based on Visible and Infrared Image Fusion [J]. Acta Armamentarii, 2024, 45(7): 2085-2096. |
| [11] | LIU Peng, XIONG Zeyu, JING Wenbo, FENG Xuan, ZHANG Junhao, LIU Tongbo, WU Xueni, XIA Xuan, WAN Linlin, ZHAO Haili. Degrad Target Detection Algorithm [J]. Acta Armamentarii, 2024, 45(6): 2065-2075. |
| [12] | LIANG Guolong, LUO Junge, HAO Yu, FU Jin. An Array Extension Method Based on Combination of Sub-array Covariance Matrices [J]. Acta Armamentarii, 2024, 45(5): 1717-1724. |
| [13] | SHEN Ying, LIU Xiancai, WANG Shu, HUANG Feng. Real-time Detection of Low-altitude Camouflaged Targets Based on Polarization Encoded Images [J]. Acta Armamentarii, 2024, 45(5): 1374-1383. |
| [14] | LI Qingzhu, LI Jing, LI Zhining, SHI Zhiyong, WEN Xuezhong. Research Progress on Target Detection Technology of Magnetic Gradient Tensor System [J]. Acta Armamentarii, 2024, 45(12): 4205-4230. |
| [15] | SHEN Ying, HUANG Weida, ZHOU Zebing, HUANG Feng, WANG Shu. Contrast Enhancement for Camouflage Target Detection Based on Feature Band Polarization Imaging [J]. Acta Armamentarii, 2024, 45(10): 3488-3498. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||