
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (S1): 250334-.doi: 10.12382/bgxb.2025.0334
Previous Articles Next Articles
LIAO Wenbo1, ZHOU Junjie1,2,*(
), WU Yi1, CHEN Ze1, ZHENG Zhihao1
Received:2025-04-30
Online:2025-11-06
Contact:
ZHOU Junjie
LIAO Wenbo, ZHOU Junjie, WU Yi, CHEN Ze, ZHENG Zhihao. Multibody Dynamics Characteristics of Friction-welded Piston and Their Effect on Pump Cavitation Mitigation[J]. Acta Armamentarii, 2025, 46(S1): 250334-.
Add to citation manager EndNote|Ris|BibTeX
| 名称 | 项目 | 数值 |
|---|---|---|
| 旋转摩擦焊 工艺参数 | 主轴升速时间/ s | 10.00 |
| 主轴转速/rpm | 4520 | |
| 摩擦产热压力/MPa | 3.00 | |
| 摩擦产热时间/s | 4.20 | |
| 急停制动时间/s | 0.40 | |
| 顶锻粘合压力/MPa | 8.50 | |
| 顶锻粘合时间/s | 3.00 | |
| 熔化缩距/mm | 4.20 | |
| 待焊面积/mm2 | 417.00 | |
| 峰值温度/℃ | 1140 | |
| 待焊件 (42CrMo) | 密度/(kg·m-3) | 7.85 |
| 杨氏模量/Pa | 2.10×105 | |
| 泊松比 | 0.300 | |
| 熔点温度/℃ | 1440 | |
| 待焊接端面粗糙度/μm | ≤0.8 | |
| 待焊接端面硬度/HB | 257~269 | |
| 屈服强度/MPa | ≥930 | |
| 抗拉强度(调质后)/MPa | ≥1080 |
Table 1 Welding process parameters and material parameters
| 名称 | 项目 | 数值 |
|---|---|---|
| 旋转摩擦焊 工艺参数 | 主轴升速时间/ s | 10.00 |
| 主轴转速/rpm | 4520 | |
| 摩擦产热压力/MPa | 3.00 | |
| 摩擦产热时间/s | 4.20 | |
| 急停制动时间/s | 0.40 | |
| 顶锻粘合压力/MPa | 8.50 | |
| 顶锻粘合时间/s | 3.00 | |
| 熔化缩距/mm | 4.20 | |
| 待焊面积/mm2 | 417.00 | |
| 峰值温度/℃ | 1140 | |
| 待焊件 (42CrMo) | 密度/(kg·m-3) | 7.85 |
| 杨氏模量/Pa | 2.10×105 | |
| 泊松比 | 0.300 | |
| 熔点温度/℃ | 1440 | |
| 待焊接端面粗糙度/μm | ≤0.8 | |
| 待焊接端面硬度/HB | 257~269 | |
| 屈服强度/MPa | ≥930 | |
| 抗拉强度(调质后)/MPa | ≥1080 |
| 图示 | 泵技术参数 | 数值 |
|---|---|---|
| | 额定压力/MPa | 35 |
| 最高压力/MPa | 42 | |
| 额定转速/rpm | 2400 | |
| 最大倾角/(°) | 16 | |
| 排量/ml | 145 | |
| 摩擦焊接柱塞的主要几何特征 | ||
| D=26.1mm | R=9.35mm | |
| d3=3mm | L=94.2mm | |
Table 2 Technical parameters of heavy-duty piston pumps and piston
| 图示 | 泵技术参数 | 数值 |
|---|---|---|
| | 额定压力/MPa | 35 |
| 最高压力/MPa | 42 | |
| 额定转速/rpm | 2400 | |
| 最大倾角/(°) | 16 | |
| 排量/ml | 145 | |
| 摩擦焊接柱塞的主要几何特征 | ||
| D=26.1mm | R=9.35mm | |
| d3=3mm | L=94.2mm | |
| 流体介质参数 | |||
|---|---|---|---|
| 参数 | 数值 | 参数 | 数值 |
| 动力粘度/Pa·s | 0.04039 | 油液密度/(kg·m-3) | 870 |
| 弹性模量/MPa | 1500 | 饱和蒸汽压/MPa | 0.004 |
| 气体质量分数/% | 0.00164 | 环境温度/K | 328 |
| 刚体、柔性体材料参数 | |||
| 部件 | 密度/(kg·m-3) | 杨氏模量/Pa | 泊松比 |
| 回程盘(刚) | 7.85×103 | 2.06×105 | 0.280 |
| 球铰(刚) | 8.5×103 | 1.10×105 | 0.330 |
| 滑靴(柔) | 8.5×103 | 1.10×105 | 0.330 |
| 柱塞(柔) | 7.85×103 | 2.10×105 | 0.300 |
| 缸体(刚) | 7.85×103 | 2.16×105 | 0.269 |
| 斜盘(刚) | 7.85×103 | 2.07×105 | 0.270 |
Table 1 Input parameters
| 流体介质参数 | |||
|---|---|---|---|
| 参数 | 数值 | 参数 | 数值 |
| 动力粘度/Pa·s | 0.04039 | 油液密度/(kg·m-3) | 870 |
| 弹性模量/MPa | 1500 | 饱和蒸汽压/MPa | 0.004 |
| 气体质量分数/% | 0.00164 | 环境温度/K | 328 |
| 刚体、柔性体材料参数 | |||
| 部件 | 密度/(kg·m-3) | 杨氏模量/Pa | 泊松比 |
| 回程盘(刚) | 7.85×103 | 2.06×105 | 0.280 |
| 球铰(刚) | 8.5×103 | 1.10×105 | 0.330 |
| 滑靴(柔) | 8.5×103 | 1.10×105 | 0.330 |
| 柱塞(柔) | 7.85×103 | 2.10×105 | 0.300 |
| 缸体(刚) | 7.85×103 | 2.16×105 | 0.269 |
| 斜盘(刚) | 7.85×103 | 2.07×105 | 0.270 |
| [1] |
杜善霄, 周俊杰, 荆崇波, 等. 斜盘式轴向柱塞泵伺服变量特性[J]. 兵工学报, 2023, 44(1):193-202.
doi: 10.12382/bgxb.2021.0814 |
|
doi: 10.12382/bgxb.2021.0814 |
|
| [2] |
岳嘉为, 代波, 吴旭, 等. 轴向柱塞泵流量脉动对火箭炮俯仰调炮精度的影响分析[J]. 兵工学报, 2019, 40(9):1781-1786.
doi: 10.3969/j.issn.1000-1093.2019.09.003 |
|
doi: 10.3969/j.issn.1000-1093.2019.09.003 |
|
| [3] |
汪浒江, 毛明, 林宇, 等. 柱塞泵马达高压油路压力脉动耦合特性[J]. 兵工学报, 2024, 45(11):3781-3791.
doi: 10.12382/bgxb.2024.0405 |
|
doi: 10.12382/bgxb.2024.0405 |
|
| [4] |
|
| [5] |
陈忠海. 摩擦焊接技术及其工程应用[J]. 电焊机, 2011, 41(8):101-106.
|
|
|
|
| [6] |
刘雪梅, 张彦华, 邹增大, 等. 先进摩擦焊接技术的开发与应用[J]. 热加工工艺, 2006,(2):49-52.
|
|
|
|
| [7] |
韦金钰. 挖掘机液压油缸活塞杆连续驱动摩擦焊工艺研究[D]. 徐州: 中国矿业大学, 2019.
|
|
|
|
| [8] |
宋生华, 何锁山, 王其福. 工程油缸活塞杆摩擦焊接工艺优化研究[J]. 液压气动与密封, 2023, 43(6):114-118.
doi: 10.3969/j.issn.1008-0813.2023.06.026 |
|
|
|
| [9] |
任芝兰. 液压缸体的焊接[J]. 新技术新工艺, 2005 (6):52-53.
|
|
|
|
| [10] |
关晓平, 田新昊. 摩擦焊接基本原理及应用前景[J]. 机械制造, 2015, 53(1):77-79.
|
|
|
|
| [11] |
张晗, 朱志明. 连续驱动摩擦焊接技术的研究与工程应用[J]. 工程科学学报, 2022, 44(6):1002-1013.
|
|
|
|
| [12] |
李丹. 加强焊接技术创新研究,促进基础研究与工程化应用的融合——走进陕西省摩擦焊接工程技术重点实验室[J]. 航空制造技术, 2019, 62(19):76-77.
|
|
|
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
张静, 廖文博, 隋蕊阳, 等. 基于ADAMS和Pumplinx联合仿真的柱塞泵回程盘运动受力薄弱点分析[J]. 兰州理工大学学报, 2021, 47(3):58-63.
|
|
|
|
| [17] |
廖文博. 轴向柱塞泵回程盘失效机理研究[D]. 兰州: 兰州理工大学, 2020.
|
|
|
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [1] | XIAO Zixun, LIU Haoran, CHEN Tairan, HUANG Biao, WANG Guoyu. Influence of Shallow Water Effect on Hydrodynamic Performance of Amphibious Vehicles [J]. Acta Armamentarii, 2025, 46(9): 240809-. |
| [2] | XIANG Yue, WANG Wenjie. Cavitation Mechanism and Performance Analysis of Toroidal Propeller [J]. Acta Armamentarii, 2025, 46(8): 240623-. |
| [3] | ZHANG Xin, ZHOU Biaojun, ZHAO Zijie, LI Haoyong, DAI Qi. Numerical Simulation of Cavitation and Ballistic Characteristics of Underwater Electromagnetically Launched Projectile in the Cross-flow Environment [J]. Acta Armamentarii, 2025, 46(5): 240690-. |
| [4] | WEI Ping, WENG Mingdeng, YANG Xiaobin, WANG Shoufa, WANG Yiming. Research on the Supercavitation Characteristics of a High-speed Vehicle Near the Free Surface [J]. Acta Armamentarii, 2025, 46(5): 240886-. |
| [5] | DING Yanchao, HE Zhenmin, ZHANG Zhe, HAN Wenji, WU Wenting. Interior Trajectory Characteristics of Underwater Ejection Using a Flexible Piston Rod Driven by Water Pressure [J]. Acta Armamentarii, 2025, 46(3): 240087-. |
| [6] | LUO Xinrui, ZHANG Meng, DENG Zhihong, SHEN Kai, JIANG Zhihao. Aerodynamic Characteristics and Control Mechanisms of Spoilers for Multi-body Tail-controlled Projectile [J]. Acta Armamentarii, 2024, 45(S2): 259-270. |
| [7] | SUN Jiawei, WAN Gang, GU Jinliang, XU Mingjie, KONG Xiaofang. A Line Array Camera-based Measurement Method for Dynamic Parameters of Underwater Projectiles and Supercavitation Evolution Process [J]. Acta Armamentarii, 2024, 45(8): 2564-2572. |
| [8] | GUO Kaixin, HUANG Chuang, YAN Feng, GU Jianxiao, LI Daijin. Influence of Weight Parameters on Oscillation Characteristics of Supercavitating Vehicle [J]. Acta Armamentarii, 2024, 45(8): 2667-2677. |
| [9] | DING Yanchao, WANG Baoshou, WU Wenting, LIU Xinhui, TONG Xin. Modeling of Interior Trajectory of Water-driven Underwater Launch Device with Two-stage Piston [J]. Acta Armamentarii, 2024, 45(2): 594-605. |
| [10] | WANG Hujiang, MAO Ming, LIN Yu, MAO Feihong, WANG Tao, TANG Shousheng, BAO Qianqian. Coupling Characteristics of Pressure Pulsation in the High-pressure Oil Circuit of Piston Pump-motor System [J]. Acta Armamentarii, 2024, 45(11): 3781-3791. |
| [11] | WANG Minghuan, LÜ Ming, HE Kailei, ZHENG Jinsong, XU Xuefeng. Effect of Cavitation Micro-jet in Interelectrode Gap on Material Erosion in Ultrasonic Assisted Electrochemical Micromachining [J]. Acta Armamentarii, 2023, 44(8): 2368-2380. |
| [12] | GUO Qing, LUO Kai, GENG Shaohang, QIN Kan. Numerical Study of Condensation Heat Transfer of Steam with Non-condensable Gas [J]. Acta Armamentarii, 2023, 44(7): 2080-2091. |
| [13] | LI Ziming, LIU Zhenming, LIU Jingbin, CHEN Ping. Model Comparison of Fuel Cavitation Phenomena in Microchannels of Marine Diesel Engines [J]. Acta Armamentarii, 2023, 44(10): 3091-3100. |
| [14] | REN Guanlong, SUN Haijun, XU Yihua. Effects of Intake Flow Rate on Powder Fluidization and Conveying in a Piston-Type Powder Feeding Device [J]. Acta Armamentarii, 2023, 44(10): 2906-2919. |
| [15] | DU Shanxiao, ZHOU Junjie, JING Chongbo, ZHANG Zhu, LIAO Wenbo. Servo Variable Displacement Characteristics of Swash Plate Axial Piston Pump [J]. Acta Armamentarii, 2023, 44(1): 193-201. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||