
Acta Armamentarii ›› 2025, Vol. 46 ›› Issue (11): 250077-.doi: 10.12382/bgxb.2025.0077
Previous Articles Next Articles
ZHANG Yangyang, KANG Jiayin*(
), MA Hanyan, ZHANG Wenhui, WANG Huaiyou
Received:2025-02-06
Online:2025-11-27
Contact:
KANG Jiayin
ZHANG Yangyang, KANG Jiayin, MA Hanyan, ZHANG Wenhui, WANG Huaiyou. Infrared and Visible Image Fusion Based on Mamba-empowered Triple-branch Generative Adversarial Network[J]. Acta Armamentarii, 2025, 46(11): 250077-.
Add to citation manager EndNote|Ris|BibTeX
| 方法 | 卡普坦_1123 | 卡普坦_1654 | 房子前的两位男士 | 战壕中的士兵 | 北约营地 |
|---|---|---|---|---|---|
| 红外图像 | | | | | |
| 可见光图像 | | | | | |
| DenseFuse | | | | | |
| RFN-Nest | | | | | |
| FusionGAN | | | | | |
| GANMcC | | | | | |
| PPTFusion | | | | | |
| YDTR | | | | | |
| DATFuse | | | | | |
| TUFusion | | | | | |
| ITFuse | | | | | |
| 本文方法 | | | | | |
Table 1 The fusion results of different methods on TNO dataset
| 方法 | 卡普坦_1123 | 卡普坦_1654 | 房子前的两位男士 | 战壕中的士兵 | 北约营地 |
|---|---|---|---|---|---|
| 红外图像 | | | | | |
| 可见光图像 | | | | | |
| DenseFuse | | | | | |
| RFN-Nest | | | | | |
| FusionGAN | | | | | |
| GANMcC | | | | | |
| PPTFusion | | | | | |
| YDTR | | | | | |
| DATFuse | | | | | |
| TUFusion | | | | | |
| ITFuse | | | | | |
| 本文方法 | | | | | |
| 方法 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| DenseFuse | 6.3969 | 51.0034 | 0.3059 | 0.8983 | 0.0244 | 0.8583 | 2.6284 | 12.7938 |
| RFN-Nest | 7.0228 | 73.9430 | 0.3148 | 0.8953 | 0.0265 | 0.8901 | 3.1533 | 14.0456 |
| FusionGAN | 6.5128 | 58.1785 | 0.2041 | 0.8848 | 0.0262 | 0.6969 | 2.6679 | 13.0255 |
| GANMcC | 6.7244 | 64.9089 | 0.2163 | 0.8903 | 0.0243 | 0.8275 | 2.6559 | 13.4489 |
| PPTFusion | 6.4674 | 53.9450 | 0.3107 | 0.8902 | 0.0322 | 0.8442 | 3.1813 | 12.9348 |
| YDTR | 6.4823 | 56.8452 | 0.3719 | 0.8915 | 0.0343 | 0.8488 | 3.4003 | 12.9645 |
| DATFuse | 6.4604 | 57.6565 | 0.4643 | 0.8705 | 0.0390 | 0.7984 | 3.9804 | 12.9208 |
| TUFusion | 6.5160 | 55.5695 | 0.2108 | 0.8928 | 0.0186 | 0.8457 | 2.1673 | 13.0319 |
| ITFuse | 6.1008 | 45.1537 | 0.1832 | 0.8892 | 0.0169 | 0.7924 | 1.9264 | 12.2017 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
Table 2 Average values of evaluation metrics regarding 20 pairs of images fused by the different methods
| 方法 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| DenseFuse | 6.3969 | 51.0034 | 0.3059 | 0.8983 | 0.0244 | 0.8583 | 2.6284 | 12.7938 |
| RFN-Nest | 7.0228 | 73.9430 | 0.3148 | 0.8953 | 0.0265 | 0.8901 | 3.1533 | 14.0456 |
| FusionGAN | 6.5128 | 58.1785 | 0.2041 | 0.8848 | 0.0262 | 0.6969 | 2.6679 | 13.0255 |
| GANMcC | 6.7244 | 64.9089 | 0.2163 | 0.8903 | 0.0243 | 0.8275 | 2.6559 | 13.4489 |
| PPTFusion | 6.4674 | 53.9450 | 0.3107 | 0.8902 | 0.0322 | 0.8442 | 3.1813 | 12.9348 |
| YDTR | 6.4823 | 56.8452 | 0.3719 | 0.8915 | 0.0343 | 0.8488 | 3.4003 | 12.9645 |
| DATFuse | 6.4604 | 57.6565 | 0.4643 | 0.8705 | 0.0390 | 0.7984 | 3.9804 | 12.9208 |
| TUFusion | 6.5160 | 55.5695 | 0.2108 | 0.8928 | 0.0186 | 0.8457 | 2.1673 | 13.0319 |
| ITFuse | 6.1008 | 45.1537 | 0.1832 | 0.8892 | 0.0169 | 0.7924 | 1.9264 | 12.2017 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
| 模型 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| Dual-branch | 6.7056 | 76.1858 | 0.3453 | 0.8961 | 0.0537 | 0.8086 | 4.8628 | 13.4112 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
Table 3 Average values of evaluation metrics regarding 20 pairs of images fused by the different models
| 模型 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| Dual-branch | 6.7056 | 76.1858 | 0.3453 | 0.8961 | 0.0537 | 0.8086 | 4.8628 | 13.4112 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
| 模型 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| Transformer-Model | 6.9228 | 80.2671 | 0.4890 | 0.9039 | 0.0567 | 0.8885 | 5.5269 | 13.8457 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
Table 4 Average values of evaluation metrics regarding 20 pairs of images fused by the different models
| 模型 | EN | SD | QABF | FMI_Pixel | SF | MS_SSIM | AG | MI |
|---|---|---|---|---|---|---|---|---|
| Transformer-Model | 6.9228 | 80.2671 | 0.4890 | 0.9039 | 0.0567 | 0.8885 | 5.5269 | 13.8457 |
| 本文方法 | 7.0951 | 92.6644 | 0.5083 | 0.9057 | 0.0556 | 0.8811 | 5.4113 | 14.1901 |
| 方法 | Transformer-Model | 本文方法 |
|---|---|---|
| 平均运行时间/s | 1.02 | 0.11 |
Table 5 Average running time for 20 pairs of images fused by the different fusion methods
| 方法 | Transformer-Model | 本文方法 |
|---|---|---|
| 平均运行时间/s | 1.02 | 0.11 |
| [1] |
史文云, 任晓明, 颜楠楠. 基于Schatten-p LatLRR的电力设备红外与可见光图像融合[J]. 激光技术, 2025, 49(1):67-73.
|
|
|
|
| [2] |
doi: 10.1016/j.inffus.2018.02.004 URL |
| [3] |
李秋恒, 邓豪, 刘桂华, 等. 基于多尺度及多头注意力的红外与可见光图像融合[J]. 红外技术, 2024, 46(7):765-774.
|
|
|
|
| [4] |
doi: 10.1016/j.ins.2017.09.010 URL |
| [5] |
doi: 10.1016/j.inffus.2005.09.001 URL |
| [6] |
doi: 10.1364/JOSAA.34.001400 URL |
| [7] |
doi: 10.1016/j.ijleo.2019.163497 URL |
| [8] |
唐霖峰, 张浩, 徐涵, 等. 基于深度学习的图像融合方法综述[J]. 中国图象图形学报, 2023, 28(1):3-36.
|
|
doi: 10.11834/jig.220422 URL |
|
| [9] |
doi: 10.1109/TIP.83 URL |
| [10] |
doi: 10.1016/j.inffus.2021.02.023 URL |
| [11] |
康家银, 马寒雁, 姬云翔, 等. 基于三支路GAN结合小波变换的红外与可见光图像融合方法:CN,202410671664.4[P].2024-08-27.
|
|
|
|
| [12] |
武凌霄, 康家银, 姬云翔, 等. 基于多判别器双流生成对抗网络的红外与可见光图像融合[J]. 兵工学报, 2024, 45(6):1799-1812.
doi: 10.12382/bgxb.2023.0130 |
|
doi: 10.12382/bgxb.2023.0130 |
|
| [13] |
doi: 10.1016/j.inffus.2018.09.004 URL |
| [14] |
doi: 10.1016/j.neucom.2022.02.025 URL |
| [15] |
doi: 10.1109/TCSVT.2023.3234340 URL |
| [16] |
|
| [17] |
doi: 10.1016/j.patcog.2022.109295 URL |
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
doi: 10.1109/TMM.2022.3192661 URL |
| [23] |
doi: 10.1109/TCSVT.2023.3296745 URL |
| [24] |
doi: 10.1016/j.patcog.2024.110822 URL |
| [25] |
doi: 10.1117/1.2945910 URL |
| [26] |
doi: 10.1088/0957-0233/8/4/002 URL |
| [27] |
doi: 10.1049/el:20000267 URL |
| [28] |
|
| [29] |
doi: 10.1049/el:20020212 URL |
| [30] |
doi: 10.1109/TIP.2015.2442920 pmid: 26068317 |
| [31] |
doi: 10.1109/TPAMI.2011.109 URL |
| [32] |
doi: 10.1109/TPAMI.2005.159 URL |
| [1] | GAO Mingze, XU Lixin, SHI Xiaolong, WANG Weihan, WANG Fengjie, HU Shiyuan, WU Yanjiang, CHEN Huimin. A Target Recognition Algorithm for Linear Array Compound Imaging Fuze under Jamming Conditions [J]. Acta Armamentarii, 2025, 46(7): 240708-. |
| [2] | XIAO Feng, LU Hao, ZHANG Wenjuan, HUANG Shujuan, JIAO Yulin, LU Zhaoting, LI Zhaoshan. Aerial Infrared Image Target Recognition Algorithm Based on Rotation Equivariant Convolution [J]. Acta Armamentarii, 2024, 45(8): 2817-2827. |
| [3] | CHANG Tianqing, ZHANG Jie, ZHAO Liyang, HAN Bin, ZHANG Lei. Research on Armored Vehicle Detection Algorithm Based on Visible and Infrared Image Fusion [J]. Acta Armamentarii, 2024, 45(7): 2085-2096. |
| [4] | WU Lingxiao, KANG Jiayin, JI Yunxiang, MA Hanyan. Infrared and Visible Image Fusion Using Dual-stream Generative Adversarial Network with Multiple Discriminators [J]. Acta Armamentarii, 2024, 45(6): 1799-1812. |
| [5] | SU Di, WANG Shaobo, ZHANG Cheng, CHEN Zhisheng, LIU Chaoyue. Projectile-borne Image Deblurring Algorithm Based on Generative Adversarial Networks [J]. Acta Armamentarii, 2024, 45(3): 855-863. |
| [6] | XIONG Jiamei, WANG Yongzhen, YAN Xuefeng, WEI Mingqiang. An Algorithm of Battlefield Image Desmoking Based on Semantic Guidance and Contrastive Learning [J]. Acta Armamentarii, 2024, 45(2): 671-683. |
| [7] | DUAN Yichen, SHEN Xiaohong, WANG Haiyan, YAN Yongsheng. An Anti-decoy Jamming Method of Ship-radiated Noise Signals Based on Unsupervised Time-frequency Information Fusion [J]. Acta Armamentarii, 2023, 44(9): 2722-2731. |
| [8] | YAN Yuwen, BI Wenhao, ZHANG An, ZHANG Baichuan. Task Allocation Method of UAV Clusters Based on Sequence Generative Adversarial Network [J]. Acta Armamentarii, 2023, 44(9): 2672-2684. |
| [9] | WANG Zhong-mei, YANG Xiao-mei , GU Xing-fa. Small Target Detection in a Single Infrared Image Based on RPCA [J]. Acta Armamentarii, 2016, 37(9): 1753-1760. |
| [10] | LI Cheng, LI Jian-xun, TONG Zhong-xiang, JIA Lin-tong, ZHANG Zhi-bo. Research on Partial Image Recognition and Tracking in Infrared Imaging Terminal Guidance [J]. Acta Armamentarii, 2015, 36(7): 1213-1221. |
| [11] | WANG Jun, PENG Jin-ye, HE Gui-qing, FENG Xiao-yi, YAN Kun. Fusion Method for Visible and Infrared Images Based on Non-subsampled Contourlet Transform and Sparse Representation [J]. Acta Armamentarii, 2013, 34(7): 815-820. |
| [12] | ZHANG Yu-zhen, SUN Jia-song, CHEN Qian, GU Guo-hua, FENG Shi-jie,. Image Fusion Quality Assessment Method Based on Phase Congruency and Structural Similarity [J]. Acta Armamentarii, 2013, 34(12): 1514-1520. |
| [13] | WANG Yang, HUANG Ke-ming, HU Jun. Research of on Fire Adjustment Method Based on UV Image Fusion of Burst Point [J]. Acta Armamentarii, 2012, 33(1): 32-34. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||